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Sociality and Interaction Envelope Organize Visual 
Action Representations 
 
Leyla Tarhan*1 and Talia Konkle1 

 
 
Humans observe a wide range of actions in their surroundings. How is the visual 
cortex organized to process this diverse input? Using functional neuroimaging, 
we measured brain responses while participants viewed short videos of everyday 
actions, then probed the structure in these responses using voxel-wise encoding 
modeling. Responses were well fit by feature spaces that capture the body parts 
involved in an action and the action’s targets (i.e. whether the action was directed 
at an object, another person, the actor, and space). Clustering analyses revealed 
five large-scale networks that summarized the voxel tuning: one related to social 
aspects of an action, and four related to the scale of the interaction envelope, 
ranging from fine-scale manipulations directed at objects, to large-scale whole-
body movements directed at distant locations. We propose that these networks 
reveal the major representational joints in how actions are processed by visual 
regions of the brain.  
 
Significance Statement: 
How does the brain perceive other people’s actions? Prior work has established that 

much of the visual cortex is active when observing others’ actions. However, this activity 

reflects a wide range of processes, from identifying a movement’s direction to 

recognizing its social content. We investigated how these diverse processes are 

organized within the visual cortex. We found that five networks respond during action 

observation: one that is involved in processing actions’ social content, and four that are 

involved in processing agent-object interactions and the scale of the effect that these 

actions have on the world (its “interaction envelope”). Based on these findings, we 

propose that sociality and interaction envelope size are two of the major features that 

organize action perception in the visual cortex.   

Keywords: action perception, visual system, voxel-wise modeling, sociality, interaction 
envelope 
 
We witness a multitude of actions in daily life: running, jumping, cooking, cleaning, 
writing, and painting, to name just a few. How does the brain make sense of this diverse 
input? The process begins with basic perception, forming lines and shapes into bodies in 
motion with identities and kinematic properties, and ultimately derives rich 
representations about emotional states, social interactions, and predictions about what 
will happen next (Kable et al., 2002; Urgesi et al. 2014; Lingnau & Downing, 2015). 
Much previous work on the nature of action representation in the brain has focused on 
the end-stages of this process; for example, attempting to localize the more abstract and 
conceptual aspects of action representation (e.g., Nelissen et al., 2005; Bedny et al., 
2011; van Elk et al., 2013; Watson & Buxbaum, 2014; Wurm & Caramazza, 2019). 
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However, recent research has begun to examine action-related processing from a more 
perceptual angle, asking how regions involved in high-level vision are organized to 
support action observation (Lingnau & Downing, 2015; Wurm & Caramazza, 2017). The 
present work follows this latter approach, leveraging an encoding analytical framework to 
characterize action responses in the visual system (Mitchell et al., 2008; Huth et al., 
2012; Lescroart et al., 2015).  

 
 To employ this framework, we considered three core theoretical questions and 
their methodological implications. The first relates to the nature of the domain in 
question: what do we mean by “actions” and how should we sample this domain 
representatively (cf. Brunswick, 1955)? Many prior studies have used the tight link 
between actions and verbs as a guide, and have measured responses to written verbs 
or used verbs to guide the selection of pictures or videos of actions (Bedny et al., 2011; 
Daniele et al., 2013; Leshinskaya & Caramazza, 2014). However, common verbs are not 
always commonly-seen actions (e.g., “can”), and many commonly-seen actions are not 
often talked about (e.g., “chopping vegetables”). Further, using verbs (particularly 
without considering the type of verb) can unintentionally constrain one’s hypothesis 
space by implying that actions that look very different but are described by the same 
verb (“pushing a button” vs. “pushing a person”) share a neural representation (Hafri et 
al., 2017). To understand action observation at a more perceptual, rather than 
conceptual level, we instead sampled our action stimuli based on common human 
experiences, using the American Time Use Survey as a guide (see Methods; cf. Greene 
et al., 2016). These actions span a wide range of activities, such as cooking, traveling, 
exercising, and recreating, that a large set of Americans reported engaging in on a daily 
basis.  
 

A related consideration is how best to depict these actions in order to probe 
underlying neural responses at a meaningful level of abstraction. Historically, 
researchers have relied on highly-controlled action stimuli (Jastorff et al., 2010; Isik et 
al., 2017), often sampling primarily from hand actions such as reaching or hammering 
(Watson & Buxbaum, 2014; Fabbri et al., 2016; Wurm et al., 2017). However, these well-
designed and controlled stimuli are fundamentally limited in the range of actions they 
depict, which in turn constrains researchers’ ability to discover joints in the broader 
domain of action perception. To circumvent this limitation, others have taken a highly 
unconstrained approach, using rich, complex stimuli such as feature-length films (Huth 
et al., 2012; Chen et al., 2017; Huth et al., 2016). This approach comes much closer to 
reflecting our daily perceptual experience with actions; however, too much complexity 
can make the resulting data challenging to wrangle into interpretable results, especially 
when using thousands of features to characterize the brain’s responses to those actions. 
Thus, in the present work, we took an approach that sits in between these extremes: we 
selected a targeted and diverse subset of everyday actions, depicted using complex, 
heterogenous videos of a short duration (Figure 1).  
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Figure 1. Action Video Stimuli.  For each of the 60 actions in the stimulus set, a key frame is 

shown from one video. The key frames are arranged loosely by semantic properties for illustration 

purposes. These actions were selected to widely sample the space of everyday actions, based on 

commonly-occurring activities listed in the American Time Use Survey.  

The second major consideration concerns which brain regions to target. Prior work 
has revealed that watching other people’s actions engages a broad network of regions 
with nodes in all major lobes of the brain, known as the action observation network 
(Caspers et al., 2010; Kalenine et al., 2010; Jola et al., 2012; Urgesi et al., 2014). 
However, the perceptual processing mechanisms that operate over objects, bodies, and 
motion likely also play a role in representing ecological actions. Therefore, it is critical to 
consider more widespread action responses across broad swathes of occipitotemporal 
and parietal cortices (e.g. Hafri et al., 2017; Wurm & Caramazza, 2017). Given this, we 
used a novel method to identify voxels that reliably differentiate among different actions 
(Tarhan & Konkle, under review), rather than constraining our analyses to specific 
regions of interest emphasized in the literature.  

 
The final major consideration concerns the nature of the tuning in these regions. That 

is, what is it about an action that makes a given voxel respond more to that action than 
to others? The possibilities are potentially infinite, as actions differ from one another 
along many dimensions; luckily, the literature proposes several critical features and 
properties that may underlie action representations. For example, actions can be 
analyzed both in terms of the means by which they are performed (e.g., their kinematics 
and body postures) and the ends that they are targeted at (e.g., the actor’s intentions; 
Lingnau et al., 2015; Kemmerer et al., 2008). Means and ends features may be 
represented by distinct regions, as evidence suggests that visual responses are 
organized by body parts in the lateral temporal cortex (Beauchamp et al., 2002; Bracci et 
al., 2015), while information about an actor’s goal is processed by the inferior parietal 
sulcus (Hamilton & Grafton, 2006). As another example, linguistics research finds that 
verbs can be divided into classes based on whether they are directed at another entity 
(“dyadic”), and whether they entail a change of state in the world (Kemmerer et al., 2008; 
Levin, 1985; Levin, 1993). Relatedly, recent empirical work suggests that action 
processing in the lateral temporal cortex is organized by two major dimensions:  
sociality—whether or not an action is directed at a person -- and transitivity--whether or 
not it is directed at an object (Wurm et al., 2017; Lingnau & Downing, 2015).  
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In the present study, we operationalized some of these proposed properties, 
specifically the body parts that are involved in performing an action and what the action 
is directed at (its target; e.g., an object, another person, et cetera). Within the broad 
context of action processing, we consider these to be “high-level perceptual” features (as 
opposed to more conceptual or non-visual features). For example, we can recognize that 
“knitting” engages the hands and is directed at an object without any knowledge about 
the actor’s identity or what knitting is for. Thus, these features relate more directly to the 
visual processing of actions, in contrast to the more abstract properties of actions and 
verbs that have been the focus of much of the literature.  

 
With these considerations in mind, the goal of this study was to understand and 

characterize what properties of actions best predict corresponding neural responses, 
allowing for the possibility that different regions of cortex are sensitive to different 
properties. To preview, we found that the effectors used to perform an action and what 
an action is targeted at successfully predicted responses to new action videos in much 
of the occipito-temporal and parietal cortices. Further, an analysis of the voxel-wise 
tunings to these features revealed a large-scale organization of five networks that span 
the ventral and dorsal visual streams, whose tuning is related to an action’s spatial scale 
of interaction and relevance to agents. We argue that these networks reflect meaningful 
divisions in how actions – and, more broadly, visual inputs across domains – are 
processed by the brain.  
 
 
RESULTS 
 
To investigate neural responses to a wide range of human movements, 60 actions were 
selected based on what a large sample of Americans reported performing on a daily 
basis (U.S. Bureau of Labor Statistics, 2014). These actions span several broad 
categories such as personal care, eating and drinking, socializing, and athletics (Figure 
1). Two short (2.5 s) videos were selected to depict each action then divided into two 
sets. Each video depicts a sequence of movements (e.g., stirring a pot) rather than an 
isolated movement (e.g., grasping a spoon, taking one step), and thus may alternatively 
be thought of as depicting “activities” rather than “actions.” However, “activity” can also 
connote something done over a much longer timescale and with greater variation in 
perceptual properties, such as “cooking dinner.” Thus, for clarity we refer to the stimuli 
as action videos. Participants (N=13) watched these action videos while undergoing 
functional magnetic resonance imaging (fMRI) in a condition-rich design that enabled us 
to extract whole-brain neural responses to each video (see SI Appendix).  
 
Voxel Selection Reveals Reliable Regions 
 
Before analyzing the structure in these neural responses, we first asked which regions of 
the brain reliably differentiate the actions at all—that is, which regions systematically 
respond more to some actions than others. To do so, we utilized a reliability-based voxel 
selection method (Tarhan & Konkle, under review). This method computes split-half 
voxel reliability between responses to the videos in video sets 1 and 2, and then selects 
a cutoff that maximizes the average multi-voxel pattern reliability to each video (Figure 
2, see Methods). This selection method is well-suited to our voxel-wise modeling 
approach for two reasons. First, it retains voxels that show systematic differences in 
activation across videos -- which we will ultimately try to model and predict -- removing 
any voxels that are either unreliable or respond equally to all actions. Second, for any 
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action (e.g., riding a bike), the two example videos in each set differed in many respects 
(including the direction of movement, background, identity of the actor, et cetera). Thus, 
any voxels that respond similarly across these two video sets have some tolerance to 
very low-level features.  

 
The split-half reliability for each voxel is plotted in Figure 2c (see Figure S2 for 

single-subject data). To select a cutoff for “reliable” voxels, we swept through a range of 
possible thresholds to find one that maximized both coverage and reliability (see 
Methods). Through this procedure, a voxel-reliability cut-off of r≥0.30 was selected, 
yielding an average item-pattern reliability of r=0.88 in the group data (Figure 2b). This 
method revealed reliable activations along an extensive stretch of the ventral and 
parietal cortices, with coverage in lateral occipito-temporal cortex (OTC), ventral OTC, 
and the intra-parietal sulcus (IPS) (Figure 2c). Reliability was relatively low in early 
visual areas, as expected from the cross-set reliability computation. All subsequent 
analyses were performed on this subset of reliable voxels.  

 
 
 

 
Figure 2. Reliability-Based Voxel Selection. A) Schematic illustrating how voxel split-half 

reliability and item-pattern reliability were calculated from whole-brain response data. B) Plot of 

average item-pattern reliability (split-half reliability of each item’s multi-voxel pattern; y-axis) 

among voxels that survive a range of reliability cut-offs (x-axis). Brains along the x-axis display 

the voxels that survive the reliability cut-offs at r = -1, 0, 0.35, and 0.7. C) Whole-brain map of 

split-half voxel reliability. D) Reliable voxels (r>0.30) selected based on the point where the curve 

plotted in (B) begins to plateau (see Tarhan & Konkle, 2019 for details). These results are based 

on group data. All analyses were conducted over reliable voxels, which were selected using the 

procedure outlined here. 
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Operationalizing Feature Spaces with Behavioral Ratings 
 
Among the possible features that differentiate actions, we hypothesized that the body 
parts involved in an action and what an action is directed at are important features that 
underlie at least some of the neural responses to actions. To measure the body parts 
feature space, human raters completed an online experiment in which they selected the 
body parts that were engaged by each action from among 20 possible effectors, such as 
legs, hands, eyes, torso, and individual fingers. The final feature values for each action 
were averaged over participants and are depicted for an example action in Figure 3b.   
 

Given the natural covariance between different effectors, we used a principle 
components analysis to reduce this feature space into 7 principle components (PCs), 
which together account for 95% of the variance in the ratings. Inspecting how the body 
parts load on each PC reveals how different kinds of actions engage different groups of 
effectors in this stimulus set (see Figure S1a). For example, body part PC1 
distinguishes between actions that engage the legs (e.g., running) and those that 
engage the hands (e.g., painting). Given that we selected actions that are commonly 
seen, not actions that maximally span the possible effectors, these principle components 
likely highlight the major body part synergies and distinctions in the space of everyday 
actions (e.g., perambulatory actions that center around the legs and feet versus manual 
actions that tend to require finer control). 

 
Our second hypothesized feature space captures information about action targets, 

i.e. what an action is directed at. To measure these features, raters answered questions 
about whether the action in each video was directed at an object, another person, the 
actor, the reachable space, and a distant location. Actions could have multiple targets. 
These ratings were averaged across participants and are shown for an example video in 
Figure 3c. Following a principle components analysis, all five PCs were needed to 
account for 95% of the variance in the ratings (Figure S1b). These PCs reveal the 
covariance across action targets within this sample: for example, the first PC 
distinguishes between actions that are directed at an object (e.g., shooting a basketball) 
and those that are directed at another person or the actor (e.g., shaking hands or 
running).  
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Figure 3. Feature Spaces. For each action video, the body parts and action targets involved in 

the action were estimated through online behavioral ratings experiments. (A) Keyframe from an 

example video depicting the action “driving.” (B) Subjects indicated which parts of the body were 

involved in the action video using a clickable body map. Color saturation indicates the number of 

participants who responded that each body part was involved in this example video. (C) Subjects 

rated the actions’ targets by answering the following yes-or-no questions, aimed at one of the five 

possible targets: object: “Is this action directed at an object or set of objects?”; near space: “Are 

the surfaces and space within this actor’s reach important for the action being performed?”; far 

space: “Is a location beyond the actor’s reach important for the action being performed?”; another 

person: “Is this action directed at another person (not the actor)?”; the actor: Is this action 

directed at the actor themselves?”. Color saturation indicates the number of participants who 

responded that each target was involved in this example driving video. 

 
Together, the seven body-part principle component dimensions and five action-target 

principle component dimensions were combined into a 12-dimensional feature space 
that was used to model brain responses to the action videos. The dimensions from the 
body part and action target feature spaces were not well-correlated with each other 
(mean r = 0.02, range = -0.40 – 0.45; Figure S1c). 
 
Voxel-wise Encoding Models Predict Action Responses  
 
The primary question of this study is whether these hypothesized feature spaces can 
characterize neural responses to actions well, and if so where. To answer this question, 
we employed a voxel-wise encoding-model approach (Mitchell et al., 2008; Huth et al., 
2012), which measures how well each voxel’s tuning along these feature dimensions 
can predict its response to a new video. Put another way, this method asks: what 
weighted combination of the individual features in a feature space best predicts a voxel’s 
responses across action videos? For example, a voxel that responds strongly to videos 
of sautéing and hammering but not to jumping will be best fit by high weights on hand, 
arm, and object-directed features, and low weights on the leg and actor-directed 
features. This model can then predict new responses; for example, the same voxel 
should respond more to knitting than to running. The quality of the model’s fit was 
assessed for each voxel based on how well it made these predictions for a held-out 
dataset (measured as a high correlation between the actual and predicted responses to 
the held-out data; see Methods). 

 
We therefore used predictive performance to assess whether and where the body 

part and target feature dimensions characterize each voxel’s tuning properties well.  
Figure 4 (inset) illustrates how well the neural responses were predicted by fitting tuning 
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weights to body part and action target features. Voxel responses were predicted well 
across much of the ventral and dorsal streams (median prediction across video sets (rCV) 
= 0.41 (set 1) & 0.42 (set 2), max rCV = 0.76 (set 1) & 0.71 (set 2)). These patterns 
replicated in individual subjects, albeit at a lower overall level of prediction, which is likely 
related to differences in reliable voxel coverage across subjects (set1: median rCV = 0.18, 
max rCV = 0.64; set 2: median rCV  = 0.20, max rCV = 0.67; Figure S4). 
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Figure 4. Large-Scale Feature Tuning Structure. Data-driven clustering of the feature weights 

for body parts and target features. Inset brains display the prediction performance (rCV, the 

correlation between predicted and actual responses in held-out data) for the combination of these 

features within reliable voxels. Larger brains display the five large-scale clusters on an example 

subject’s brain. Heat maps display each cluster centroid’s feature weight profile. Key frame 

images depict example videos that elicited high responses from each network. Results are 

displayed for video set 1 (see also Figure S3). Only voxels that were well-fit by the model in both 

video sets (positive rcv that was significant after FDR correction for multiple comparisons) were 

analyzed. Voxels surviving this criterion with insufficient variance to be included in the clustering 

analysis are colored grey. 
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Critically, the key advantage of this encoding model framework is that we can 

examine not just how well the model predicts a voxel’s response to a new action, but 
also why. For example, some voxels might be tuned to leg and foot involvement, while 
others might be tuned to hand and mouth involvement. To understand how these feature 
tunings are mapped across the cortex, we used k-means clustering to group voxels by 
their model coefficients (see Methods), considering only voxels whose responses were 
fit reasonably well by the model (rCV>0 and significant after corrections for multiple 
comparisons). This analysis clusters voxels together if they have similar feature tunings 
(e.g., voxels assigned high weights on hand involvement and object targets but not leg 
involvement will be grouped together). Importantly, this method does not require that 
voxels are grouped into contiguous clusters, making it possible to discover both 
contiguous regions and networks of non-contiguous regions that have similar tuning 
functions. Further, this method does not presuppose any particular combinations of 
feature tunings ahead of time, allowing natural patterns to be revealed directly from the 
data (see Webster & Fine, in prep; Lashkari et al., 2010; Vul et al., 2012 for related 
analysis approaches). Through this method, we found evidence for five networks that 
are tuned to different characteristics of actions. We chose this five-network solution by 
considering silhouette distance and cluster center similarity (see Methods, Figure S3a). 
Each network is shown with its corresponding tuning function in Figure 4.  

 
Network 1 (pink) is primarily right-lateralized, covering regions along the fusiform 

gyrus and extending between the occipital face area (OFA) and superior temporal sulcus 
(STS). This network is tuned to face features and not hands and is directed at people 
(others and the actor) but not objects. It is near STS regions typically engaged by social 
processing (Saxe et al., 2004; Deen et al., 2015; Isik et al., 2017) while also extending 
inferiorly into ventral OTC along the fusiform gyrus. This network’s tuning pattern 
highlights a possible large-scale neural division between social or body-centric actions 
that are directed at other people (shaking hands) or the actor themselves (laughing), and 
those directed at objects and space. In fact, this division emerges early on: Network 1 
separates out from the rest when voxels are grouped into just two networks (Figure S5), 
a finding we confirmed using hierarchical clustering (Figure S6; see SI Appendix). This 
pattern suggests that the distinction between social or agent-focused actions and 
nonsocial actions is the predominant joint organizing action responses in these regions.  

 
The remaining four networks are tuned to non-social aspects of action. The dorsal 

stream responses divided into two prominent networks. Network 2 (blue) contains voxels 
that stretch extensively along superior IPS, as well as a “satellite” node in lateral OTC. 
Inspecting the feature weights associated with this network indicates that these voxels 
respond most strongly to videos that involve finger and hand movements, and that are 
directed at objects in the near space (e.g., knitting). This finding resonates with a 
previously-established tool network (Johnson-Frey et al., 2004; Hasson et al., 2004; 
Grafton et al., 2007; Kalenine et al., 2010; Lingnau & Downing, 2015; Baldassano et al., 
2016; Wurm et al., 2017). Network 3 (dark green) contains voxels that stretch 
extensively along inferior IPS, into the transverse occipital sulcus (TOS), with a satellite 
node in the parahippocampal cortex (PHC). Inspecting the feature weights associated 
with this network also reveals strong tuning to both objects and near space, but with 
more arm (and not finger) involvement.  
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Network 4 (purple) is restricted to the ventral stream, including bilateral regions in the 
vicinity of extrastriate body area (EBA). Regions in this network are tuned to hands, 
arms, the torso, and near space.  

 
Finally, Network 5 (light green) has nodes along PHC, TOS, and the medial surface 

of the cortex in both the parietal and retrosplenial regions. This final network effectively 
runs parallel to Network 3 (dark green): both networks anatomically resemble scene-
preferring regions, such as the parahippocampal place area, occipital place area, and 
retrosplenial cortex (Epstein & Kanwisher, 1998; Epstein, 2005). However, compared to 
Network 3, Network 5 is tuned more strongly to actions directed at far space, the legs, 
and the whole body and less strongly to actions directed at objects. These differences in 
tuning echo prior work showing that at least one scene-preferring region – PPA – 
contains sub-regions for object and space processing (Baldassano et al., 2016).  

 
Inspecting these last four non-social networks reveals a possible overarching 

organization, where each network has a preference for a different interaction envelope, 
or the scale of space at which that agent-object interactions take place in the world. The 
four interaction envelopes move from small-scale, precise movements involving hands 
and objects (knitting), to less precise movements also involving hands and objects 
(loading a washing machine), to intermediate-scale movements involving the upper body 
and near spaces (golfing), to large-scale movements that engage the whole body and 
require more space (playing soccer). 

 
To examine the robustness of these findings in video set 1, we also conducted the 

same analysis on voxel tuning weights fit using video set 2. We then measured the 
correspondence between the two sets’ network solutions using d-prime, a signal-
detection measure that captures whether voxels were assigned to the same networks for 
both sets. This five-network solution was quite consistent across the two video sets 
(cross-sets d-prime: 1.6; Figure S3b & c), pointing to the robustness of this network 
structure. In general, we also found that the single-subject data echoed these patterns 
(Figure S4). For example, we found a cluster in the right superior temporal sulcus that is 
tuned to people in 9/13 subjects. In addition, we found that 10/13 subjects had a pair of 
clusters that spanned the intra-parietal sulcus and lateral OTC and were tuned to fine- 
and intermediate scales of space (analogous to Networks 2 and 3 in the group data). 
Further, 9/13 subjects had 3-4 networks whose tuning ranged from fine, to intermediate, 
to large scales of space, just as we observed in Networks 2-5 in the group data. 
However, not all subjects reflected the group data perfectly. In general, subjects with 
more extensive reliable coverage were a better reflection of the group, while those with 
fewer reliable voxels showed greater variability.  

 
Taken together, these voxel-wise modeling and clustering analyses provide evidence 

for five networks that distinguish predominantly between social and non-social actions, 
then further divide the non-social actions into four large classes that vary in the scale of 
space at which they affect the world. These data-driven analyses reveal that the 
relevance to agents and scale of an action in the world may be critical organizing factors 
for the perception and representation of actions in the brain.  

 
Convergence between feature-based and response-based networks 
 

To arrive at the conclusion that there are 5 major subnetworks underlying visual 
action perception, we relied on our hypothesized feature spaces, which characterize 
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actions’ body part involvement and targets. However, it is also possible that there is 
more systematic structure in the responses to these actions that is not captured by these 
feature spaces. In this case, the five networks we find may be only a partial reflection of 
the true sub-networks patterning this cortex.  

 
To examine this possibility, we performed another variant of the k-means clustering 

analysis, this time grouping voxels based on their profile of responses to all 60 videos in 
a stimulus set, rather than the profile of their feature-tuning weights. Thus, the resulting 
clusters are driven entirely by the brain’s responses to the videos themselves; the body 
part and target features did not enter into the analysis. The results of this analysis are 
displayed in Figure 5. We again found evidence for five networks (cross-sets d-prime: 
1.7) that recover a relatively similar structure to that observed based on the feature 
tuning (d-prime between feature-based and feature-free solutions: 1.6 for both video 
sets). The convergence between the results of the feature-free and feature-based 
analyses provides empirical evidence that the large-scale structure described above is 
not merely an artifact of the features we chose (see also Figure S7).  
 

 
Figure 5: Generality of the Large-Scale Structure. We compared the results of clustering 

voxels based on the feature weights fit by the encoding models (A) and by the raw activation 

patterns across all 60 videos (B). The 5-network solutions over data from video set 1 are shown 

for both clustering analyses. Parts of cortex with similar colors had either similar feature weights 

(A) or similar overall response profiles (B). Each cluster’s color was assigned algorithmically such 

that clusters with similar response profiles were similar in hue and were determined separately for 

(A) and (B).  

 

 
Auxiliary Questions  
 
We next ask a series of more targeted questions to clarify the implications of these 
results and link them directly to related work.  
 
What is the role of low-level features? 

In addition to higher-level perceptual features related to an action’s target and 
kinematics, the brain must also process low- and mid-level features like motion and form 
information. For example, videos vary in whether the actor is on the left or the right of the 
frame, and generally each video has a different spatial distribution of visual information 
across the frames. How do these lower-level aspects of the videos’ visual structure fit 
into the neural feature space, and which regions are more strongly tuned to them?  
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To investigate this question, we used an image statistics model (Gist; Oliva & 
Torralba, 2001), to capture the spatial frequency and orientation content present in a 
coarse grid over each video’s frame, averaged over time (see Methods). We then 
compared the gist model’s predictive performance with that of the body-part-action-
target model using a preference-mapping method: each voxel was colored according to 
the model that predicted its responses best. Note these two feature spaces were not 
well-correlated—the representational dissimilarity matrix correlation between gist and 
high-level features was r = 0.01 for video set 1 r= 0.05 for video set 2. Because we 
anticipated that low-level gist features would best predict responses in more retinotopic 
early visual regions, here we examined a larger set of reliable voxels, based on a variant 
of the voxel selection procedure that selects voxels that respond reliably within rather 
than across video sets and provides better coverage of early visual regions (see 
Methods). 
 

Figure 6 shows how these models perform across these regions. As expected, the 
gist features predict noticeably better in early visual cortex, but the body part and target 
features predominate in the temporal and parietal cortex. It is also worth noting that, 
even though the body part and target features largely outperform the gist features 
outside of early visual cortex, gist features also predicted neural responses moderately 
well throughout both the dorsal and ventral streams (Figure 6a). These results suggest 
that the action representations across this cortex retain information about the spatial 
layout of the action scene, even as higher-level features begin to emerge, echoing 
similar findings related to object processing (Long et al., 2018).   
 

 
Figure 6: Incorporating Low-Level Visual Features. (A) Voxel-wise encoding model prediction 

results for the gist model in reliable voxels. Voxel color reflects the cross-validated correlation 

between predicted and actual response patterns to held-out items. (B) Two-way preference map 

comparing prediction performance for the gist features with performance for the body parts and 

action target features. Voxels are colored according to the model with the best cross-validated 

prediction performance: yellow for gist, and purple for the body parts and action target features. 

Color saturation reflects the strength of the voxel’s preference (rCV for the gist model – rCV for the 

body parts and action target model).  
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The effects of low-level motion features were not investigated in-depth in this study. 

It is likely that motion plays an important role in action processing (Johansson, 1973; Isik 
et al., 2017). However, prior work has found that motion models such as motion energy 
(Nishimoto et al., 2011) are only effective at capturing brain activity when subjects are 
required to maintain central fixation. When they view videos in a naturalistic fashion, 
moving their eyes around the frame as in the current study, this model breaks down 
unless neuroimaging is coupled with eye-tracking (Nishimoto et al. 2011, Nishimoto & 
Gallant 2011). Further, our use of fMRI makes it challenging to collect measurements at 
the fine temporal scale at which motion features vary in our short video clips. Therefore, 
a combination of eye-tracking and fast fMRI sampling would be necessary to understand 
the how motion features contribute to the large-scale organization of action processing in 
the brain.  

 
A related possibility concerning motion is that the tuning of the four interaction 

envelope networks may reflect the span of movement in the videos; i.e., how much of a 
video’s frame contains motion? To investigate this question post-hoc we measured the 
span of movement in each video using two methods. First, we collected ratings of how 
much the average actor moves when performing each action. Second, we used an 
optical flow algorithm (Horn & Schunck, 1981) to measure the proportion of each video’s 
frame that contained any movement. We then calculated each network’s sensitivity to 
variations in the motion span (see SI Appendix). We found that motion span sensitivity 
tracks with the size of the interaction envelope for small and intermediate interaction 
envelopes, but not the largest (Figure S8). This pattern replicated across both motion 
span measures. Broadly, this line of inquiry raises further questions about what lower-
level visual features predict the size of an action’s interaction envelope, which will be 
fruitful ground for future research.  

 
Do these neural responses simply reflect what’s visible in each video?  

Up to this point, we have implicitly assumed that neural responses fit by the body 
part and target features reflect their involvement. However, it is also possible that these 
responses reflect the features at a more primitive level: whether they are simply visible. 
These two interpretations are necessarily related (e.g., it’s difficult to naturalistically 
depict “knitting” without also showing the hands, though whether or not the legs are 
depicted in the video is less constrained by this action). 

 
To quantify the relationship between the involvement and visibility of these features 

in this stimulus set, we separately measured which body parts and targets were visible in 
each video (see Methods). We found that ratings of the visible and involved features 
were only moderately correlated (for body parts: r = 0.38; for action targets: r = 0.30; 
combined feature space r=0.44). Figure 7a shows the features that differed the most 
between ratings of their visibility and involvement, which include the head, torso, face, 
and far space. Often, the body parts and targets that were rated as involved were a 
subset of the visible features. For example, in our video depicting the action of reading a 
book, the actor’s whole upper body, a reachable desk surface, and a distant scene 
through a window are visible; however, this action only involves the book and the actor’s 
eyes, hands, and arms. In other cases, body parts were rated as involved even if they 
were off-screen. For example, raters responded that our video depicting vacuuming, 
which only shows the actor’s legs and the vacuum, also involved the arms, hands, and 
eyes.  
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To determine whether and where the visibility or involvement of these features best 
predicted brain responses, we separately fit each model and then calculated which 
model predicted responses best in each voxel (see Methods). Figure 7b shows the 
results of this analysis. The model based on the features involved in the actions out-
performs the model based on the features that are visible in the videos in the posterior 
lateral occipital cortex, lateral temporal cortex in the vicinity of EBA, and the fusiform 
gyrus. In contrast, and somewhat surprisingly, the model based on the visible features 
predicts better in much of the IPS. Note that this analysis does not reveal how much 
variance is unique to each model; in fact, we found that a standard variance partitioning 
analysis (e.g. Lescroart et al., 2015) produced unstable results and was therefore ill-
suited to our data. Instead, this analysis indicates that the visible bodies, people, objects, 
and backgrounds play an important role in how these actions are processed in some 
regions. However, the functional involvement of these effectors and targets is a better 
description of the neural responses throughout the ventral stream.  

 
 

 
Figure 7: The Role of Feature Visibility. (A) Summary of feature-based differences between 

ratings of the features’ visibility and involvement in the actions. Body parts and action targets that 

dissociate most strongly between ratings of visibility and involvement across our stimulus set are 

colored with the strongest saturation. (B) Preference map comparing prediction performance for 

the models based on feature involvement and visibility. Voxels are colored according to the model 

with the best cross-validated prediction performance: purple for the features’ involvement, and 

blue for their visibility. Color saturation reflects the strength of the preference (rCV for the 

involvement model – rCV for the visibility model).  

 
GENERAL DISCUSSION 
 
Recognizing the actions of others is an essential capacity of the human visual system. 
While extensive research has examined this capacity within the motor and language 
systems, here we focused on the high-level perceptual properties of everyday actions. 
We found that much of the occipito-temporal and parietal cortices responded reliably 
during action observation, and these responses were well-predicted by models based on 
the body parts engaged by the actions and their targets in the world.  
 

Examining the structure in voxels’ tunings to these features revealed evidence for 
five action-processing sub-networks. The first of these networks is tuned to agent-
directed actions, including actions directed at other people and the actor themselves. 
The remaining four networks vary in the scope of their interaction envelope – the spatial 



 

16 
 

extent of interactions between agents, objects, and the environment. We propose that 
these five sub-networks reflect deeper joints within action processing in the visual 
system. In the following sections, we relate these findings to prior work, and then discuss 
how this organization for action representations might help to better understand the 
broader principles organizing the visual system.  
 
Links to Prior Work 
 

The five sub-networks found in our data converge with several known networks of 
the ventral and dorsal stream, including those that display preferences for bodies, faces, 
objects, and scenes (Kanwisher et al., 1997; Epstein & Kanwisher, 1998; Grill-Spector et 
al., 1999; Downing et al., 2001). For example, the agent-focused sub-network (Network 
1) encompasses regions which are traditionally thought to be specialized for body parts, 
whole bodies, and faces (Downing et al., 2001; Saxe et al., 2004; Bracci et al., 2011; 
Grill-Spector & Weiner, 2014; Isik et al., 2017), and it is right-lateralized, consistent with 
prior results (e.g. Grossman & Blake, 2001; Grossman & Blake, 2002). Our findings also 
converge with previous findings that responses in occipito-temporal cortex are organized 
by animacy and object size (Konkle & Oliva, 2012; Konkle & Caramazza, 2013; Long et 
al., 2018). In general, big objects are processed in regions tuned to larger-scale actions, 
small objects are processing in regions tuned to smaller-scale actions, and animals are 
processed in regions tuned to agents. Additionally, the network related to large-scale 
interactions such as locomotion (Network 5) encompasses well-known scene-selective 
regions near occipital place area, retrosplenial cortex, and along the parahippocampal 
place area. Importantly, both face and scene networks are typically identified by 
measuring responses to views of isolated scenes or faces, and then contrasting these 
against each other or to views of objects. However, in our stimuli, bodies, objects, and 
scene elements appear in all videos. Therefore, our results likely converge with prior 
findings not simply because of the mere presence of these visual categories but 
because scenes and bodies are more relevant to some actions than others.   
 

In some cases, our results diverge from prior work. For example, the sub-network 
related to large-scale actions and far spaces (Network 5), is primarily right-lateralized in 
both video sets. However, most research on scene networks shows relatively clear 
bilateral networks (Epstein & Kanwisher, 1998; Epstein et al., 2005; Epstein, 2008). 
Relatedly, the sub-networks tuned to object targets within a more focal interaction 
envelope (Networks 2 and 3) are bilateral in this data set, which is consistent with some 
tool-network studies (e.g. Kellenbach et al., 2003; Bracci & Peelen, 2013; Chen et al., 
2017), but not others (Johnson-Frey et al., 2004; Johnson-Frey, 2004; Frey, 2008). One 
interesting possibility is that studying responses to actions and actors together with tools 
and scenes will help shed light on when and why we see hemispheric differences along 
the ventral and dorsal streams.  

 
Finally, perhaps the most surprising result was that ventral stream responses were 

predicted best by whether body parts and action targets were involved in the action, 
while dorsal stream responses were predicted best by their visibility in the video. While it 
is clear that viewing actions drives both the ventral and dorsal visual streams, it is also 
clear that more work is needed to understand how the streams relate to one another 
during action observation. One potential avenue for clarifying this relationship is to 
characterize the relative contributions of what is visible and what participants fixate on. It 
is possible that participants fixate on the features that are more functionally-relevant to 
an action. If this is the case, the visual system will give these fixated features priority, 
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and therefore responses in the ventral stream may really reflect what participants look 
at, which also happen to be the features that are functionally relevant to an action. It is 
possible that the same is not true in the dorsal stream because it represents the full 
action scene, regardless of what participants look at the most. Future eye-tracking 
studies are needed to decisively test these hypotheses.  
 

In addition to converging with prior work on other categories of visual input, our 
methods build on the use of encoding models to predict responses to rich videos (Huth 
et al., 2012; Huth et al., 2016). However, our approaches differ in the granularity at 
which we predict voxel responses and subsequently infer voxel tuning properties. In 
Huth et al., (2012), a voxel’s response could be fit by putting weights on over 1,000 
predictors, including verbs like “cooking”, “talking”, and “crawl”, as well as nouns like 
“tortoise” and “vascular plant.”  It is possible to map some of these specific features onto 
our more-general ones -- for example, a voxel in their data set with high weights on 
“knitting” and “writing” might be fit in our data set by high weights on the hand, fingers, 
and object-target features.  However, one potential advantage of characterizing the 
brain’s responses at the level of body parts and targets is that the features are more 
generative: it is simple to map any new action into this low-dimensional feature space, 
and this level of representation may therefore be more appropriate for characterizing the 
response tuning of mid-to-high-level visual cortex.  
 
Sub-Networks for Action Perception 
 

One strength of the current approach is that we considered neural responses to a 
widely- and systematically-sampled set of actions. In doing so, we found that the most 
predominant division present in neural responses was between actions focused on the 
agents and those focused on objects and space (Figure 4; Figure S5, Figure S6). That 
is, viewing actions directed at the self or others seems to recruit some regions of the 
visual system to a different degree than viewing actions directed at objects and space.  
In some respects, this result is broadly consistent with Wurm & Caramazza (2017)’s 
proposal that sociality is an organizing property of action representation. However, we 
did not find converging evidence for their anatomical proposal that tuning for actions’ 
sociality and transitivity is reflected in a ventral-dorsal organization across the lateral 
OTC (see SI Appendix, Figure S9). Rather, we found that the dorsal stream and 
parahippocampal gyrus are more sensitive to object-directed actions, while most of 
lateral OTC and the fusiform gyrus are sensitive to whether an action is directed at the 
actor or another person. More generally, our data-driven finding of a neural joint between 
agent-focused and non-agent-focused actions dovetails nicely with the broader 
argument that humans recruit fundamentally different cognitive architectures when 
processing agents (e.g., inferring beliefs and goals or detecting interactions between 
agents) and interactions that are less focused on the agents  (e.g., reaching, grasping, 
and navigation; Johnson et al., 1998; Sweetenham et al., 1998; Papeo et al., 2017; Isik 
et al., 2017).  

 
We also found that regions tuned to non-agent-focused actions branched into four 

networks. We propose that these highlight different interaction envelopes, or the scales 
at which actions affect the world. These range from fine-motor, hand-focused actions like 
knitting, to coarser movements like doing laundry, to intermediate actions involving the 
upper body and near spaces like golfing, to large-scale actions that move the whole 
body within a larger space, like playing soccer. To our knowledge, the term “interaction 
envelope” was first introduced in the visual cognitive neuroscience literature to highlight 
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the difference between objects typically used with either one hand or two (Bainbridge & 
Oliva, 2015). Here we have adopted this term and expanded its scope. While the scale 
of the interaction envelope is a fairly intuitive continuum along which to organize actions, 
it is also a relatively novel theoretical proposal, contrasting with the more linguistic 
properties emphasized in the literature, such as transitivity and communicativeness 
(Grafton & Hamilton, 2007; Van Elk et al., 2014; Lingnau & Downing, 2015). Given this 
novelty, it’s important to consider why the size of the interaction envelope might be a 
useful principle for organizing brain responses to observed actions. 

 
One interesting possibility is that the interaction envelope might be useful for 

generating meaningful higher-level predictions about an actor. For example, a person 
performing a small-scale, object-directed action, like writing, likely has a focal attentional 
spotlight, a still body, and may be mentally but not physically taxed. At the other 
extreme, a person performing a large-scale action, like running, likely has a wide 
attentional spotlight, a dynamic body, and may be physically but not mentally taxed. 
Further, grouping visual action representations in this fashion resonates with important 
distinctions between high-level semantic categories. For example, most tool-use actions 
are also hand- and object-based, while fitness actions tend to engage the whole body 
within a larger spatial envelope. Following this logic, it may be productive to think of 
action processing as a form of complex scene processing that integrates object, scene, 
and body processing. That is, perhaps actions are a chassis that connects the visual 
processing of objects, bodies, and space, rather than reflecting a separate domain of 
visual input.  
 
 
 
METHODS 
Experimental Model and Subject Details 

Human Subjects 

Thirteen healthy, right-handed subjects (5 males, age: 21 – 39 years) with normal or 

corrected-to-normal vision were recruited through the Department of Psychology at 

Harvard University and participated in a 2-hour neuroimaging experiment. In addition, 

802 participants completed behavioral rating experiments conducted online. All subjects 

gave informed consent according to procedures approved by the Harvard University 

Internal Review Board.  

 

Method Details 

Stimulus Set 

120 2.5-second videos of 60 everyday actions were collected from YouTube, Vine, the 

Human Movement Database (Kuehne et al., 2011), and the University of Central 

Florida’s Action Recognition Data Set (Soomro, Zamir, & Shah, 2012). These were 

divided into 2 sets of 60 videos each, so that each set contained one exemplar depicting 

each of the 60 actions. All videos were cropped to a 512-by-512 px frame centered on 

the action, with no visible logos or borders, and stripped of sound. The 60 actions were 

selected based on the American Time Use Survey corpus (U.S. Bureau of Labor 

Statistics, 2014), which records the activities that Americans perform on a regular basis, 

across a range of general categories (e.g., household chores, fitness, and work tasks). 

These categories were used to ensure that we sampled a wide range of everyday visual 
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experience but were not used in the analyses. Key frames from both sets of videos are 

available for download from the Open Science Framework.  

 

fMRI Data Collection 

Participants viewed 120 videos of everyday actions in a condition-rich design while 

undergoing functional neuroimaging (SI Appendix). To ensure that they remained alert 

throughout the experiment, participants pressed a button whenever a red frame 

appeared around a video. 

 

Action Feature Ratings 

To collect action feature ratings, four behavioral experiments were conducted on 

Amazon Mechanical Turk. In all experiments, 9-12 raters viewed each video, named the 

action depicted, and answered experiment-specific follow-up questions. In Experiment 1 

(N = 182), raters indicated the body parts that were engaged by the action in the video 

by selecting them from a clickable map of the human body: when a body part was 

selected, it was highlighted in red (Figure 3b). There were 20 possible body parts: eyes, 

nose, mouth, ears, head, neck, shoulders, torso, back, arms, hands, individual fingers, 

waist, butt, legs, and feet. The lateralization of body parts was not analyzed: e.g., a 

rating was recorded for “hand” if raters selected the right hand, left hand, or both hands. 

In Experiment 2 (N = 240), raters indicated the body parts that were visible at any point 

in the video using the same method. In Experiment 3 (N = 180), raters indicated what 

each action was directed at by answering five yes-or-no questions: “is this action 

directed at an object or set of objects?”; “is this action directed at another person (not the 

actor)?”; is this action directed at the actor themselves?”; “are the surfaces and space 

within the actor’s reach important for the action being performed?”; “is a location beyond 

the actor’s reach important for the action being performed?” (Figure 3c). In Experiment 

4 (N = 200), raters responded to similar questions about the targets that were visible in 

the videos (e.g., “is an object or set of objects visible in the video?”).  

 

Gist Features 

For comparison with the body parts and action target features, the “gist” model (Oliva & 

Torralba, 2001) was included in the analysis as a measure of low-level visual variability 

between videos. First, each video frame was divided into an 8 x 8 grid. At each grid 

location we quantified the power at 4 different spatial frequencies and scales (12 

orientations at the finest scale, 8 at the intermediate scale, and 6 at the coarsest scale), 

yielding a 1,920-dimensional feature vector for each frame. These gist features were 

extracted for each video frame and then submitted to a principle components analysis 

(PCA) to obtain features that describe the global shape of the scene. Following Oliva & 

Torralba (2001), the first 20 principle components were then averaged across frames in 

a given video, resulting in a 120-by-20 gist feature matrix. Together, these 20 principle 

components accounted for nearly 100% of the variance in the videos. 

 

Quantification and Statistical Analysis 

fMRI Reliability and Voxel Selection 

Split-half reliability was calculated for each voxel by correlating the betas extracted from 

odd and even runs of the main task (Figure 2a). This was done in two ways. Reliability 

was calculated across sets by correlating odd and even betas from glms calculated over 
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the two video sets. Across-sets reliable voxels did not extensively cover early visual 

cortex, as this scheme requires responses to generalize over two different exemplars of 

the same action. Reliability was also calculated within sets by correlating odd and even 

betas separately for each set, then averaging the resulting r-maps. Within-set reliable 

voxels had better coverage of early visual cortex and were only used to compare the gist 

model to the body-part-action-target model (Figure 6b). For both types of reliability, we 

selected a reliability-based cutoff using a procedure from Tarhan & Konkle (2019), which 

strikes a balance between selecting a relatively small set of voxels with the highest 

reliability and selecting a larger number of voxels but with lower reliability. First, we 

plotted the reliability of each video’s multi-voxel response pattern (item-pattern reliability) 

across a range of candidate cutoffs. Then, we selected the cutoff based on where the 

multi-voxel pattern reliability begins to plateau for all videos. This method takes 

advantage of the fact that after a certain point, using a stricter cutoff restricts coverage 

without significantly increasing the data’s reliability. Using this approach, we determined 

that any voxel with an average reliability of 0.3 or higher was a reasonable cutoff for 

inclusion in the feature modeling analysis because it maximized reliability without 

sacrificing too much coverage (Figure 2b & 2c). This cutoff held in both group and 

single-subject data; however, only voxels that were reliable at the group level were 

analyzed. 

 

Voxel-wise Encoding Models 

Model Fitting and Validation 

We used an encoding-model approach (Mitchell et al., 2008; Huth et al., 2012) to model 

each voxel’s response magnitude for each action video as a weighted sum of the 

elements in the video’s feature vector (e.g., individual body parts) using L2 (“ridge”) 

regularized regression. Models were fit separately for the two video sets. The 

regularization coefficient (λ) in each voxel was selected from 100 possible values 

(ranging from 0 to the maximum value that produced a non-null model for that voxel). 

The final λ was the value that minimized the mean-squared error of the fit in a 10-fold 

cross-validation procedure, using the data from the other video set. To ensure that our 

models were not over-fit, we estimated their ability to predict out of sample using a 

cross-sets cross-validation procedure. This was done by training the model in every 

voxel, using the data from all 60 videos in one video set. We then calculated the 

predicted response magnitude for the second video set (beta weights from the training 

model * feature vector for the held-out video set). Finally, the predicted and actual data 

for the held-out actions were correlated to produce a single cross-validated r-value (rCV) 

for each voxel. All models were fit using responses from the group data (see 

Supplement for single-subject results).  

 

Data-Driven Neural Clustering 

Feature-Based Clustering 

We used k-means clustering to group voxels based on their feature weight profiles. This 

analysis groups voxels based on the similarity of the weights that the voxel-wise 

encoding model assigned to the 12 body-part and action-target features. These feature 

weights were measured by fitting the model on the complete dataset for each video set, 

and the clustering analysis was conducted separately in both Set 1 and Set 2, enabling a 

internal replication of the main result.  In order to facilitate a comparison between the 
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sets, we ensured these clustering analyses were conducted over the same set of 

voxels—thus, we only included voxels that were reliable across both video sets and 

were predicted well (rCV>0, with q < 0.01 after FDR-correction) by both the models. Next, 

we used MATLAB’s implementation of the k-means algorithm with the correlation 

distance metric to cluster voxels by feature weight profile similarity (10 replicates, 500 

max iterations). The correlation metric was chosen in order to group voxels together that 

have similar relative weightings across the features (e.g. higher for leg involvement and 

lower for near space targets). For any clustering solution, the cluster centroid weight 

profiles reflect the average normalized profile for all voxels included in the cluster.  

 

To determine the number of clusters to group the voxels into (k), we iteratively 

performed k-means on the data from video set 1, varying the possible k value from two 

to twenty (Figure S3). When choosing the final k, we considered both silhouette 

distance (how close each voxel is in the 12-dimensional feature-space to other voxels in 

its cluster, relative to other nearby clusters) and cluster center similarity (how similar the 

cluster centers are to one another on average). The logic for the latter measure is that if 

two clusters have very similar centroids, there is very little we can do to interpret their 

differences; thus, by considering solutions with lower cluster center similarity we are 

better equipped to interpret divisions within this feature space.  In addition, we visualized 

the solutions at k = 2, 3, and 4 (Figure S5), to provide insight into the hierarchical 

structure of these networks.   

 

To visualize the final clustering solution, we created cortical maps in which all 

voxels assigned to the same cluster were colored the same.  For visualization purposes, 

we chose these colors algorithmically such that clusters with similar response profiles 

were similar in hue. To do so, we submitted the clusters’ feature weight profiles to a 

multi-dimensional scaling algorithm using the correlation distance metric, placing similar 

cluster centroids nearby in a three-dimensional space. The 3D coordinates of each point 

were re-scaled to fall in the range [0 1], and then used as the Red-Green-Blue color 

channels for the cluster color. We then plotted each cluster’s centroid to determine how 

to interpret the groupings. This was done by multiplying the centroid’s feature weight 

profile over the 12 feature PCs by the factor loading matrix from the PCA, effectively 

projecting the centroid back into the original feature space. The resulting weights over 

the 25 original features were visualized using custom icons, where each feature’s color 

reflected the weighting of its associated PC feature in the centroid. 

 

As a test of robustness, we calculated the sensitivity index (d’) between the 

solutions for video sets 1 and 2. To do so, we created a voxels x voxels matrix for both 

video sets, with values equal to 1 if the voxels were assigned to the same cluster and 0 if 

they were assigned to different clusters. Hit rate was calculated as the percent of voxel-

voxel pairs that were assigned to the same cluster in set 1 that were also assigned to the 

same cluster in set 2. False alarm rate was calculated as the percent of voxel-voxel pairs 

that were not assigned to the same cluster in set 1 but were assigned to the same 

cluster in set 2. Sensitivity (d’) was subsequently calculated as z(Hit)-z(FA). D’ was also 

calculated between the shuffled data for sets 1 and 2, producing a baseline value close 

to zero (mean across k-values from 2 to 20 = -0.002, sd = 0.003). Finally, analogous 

cluster centroids were correlated between sets (Figure S3, Figure S7).  
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Feature-Free Clustering 

To compare how the voxels cluster independently of their feature tunings, we followed a 

similar procedure to group voxels by their response profiles. Here, instead of using 

feature weights, we performed the clustering over voxels’ response magnitudes to each 

action video. All other procedures were the same as those used for feature-based 

clustering.  

 

Preference Mapping Analyses 

Comparing Gist and Body-Part-Action-Target Features 

To compare performance based on the low-level gist model to the higher-level body part 

and action target models across visual cortex, we calculated a two-way preference map. 

First, both the gist model and the body-part-action-target model were used to predict 

responses in within-sets reliable voxels. Then, in each voxel, we found the model with 

the maximum rCV and colored it so that the hue corresponds to the winning model and 

the saturation corresponds to the size of the difference between that value and the 

alternative model’s performance (e.g., a voxel where the gist model did markedly better 

than the body-part-action-target model is colored intensely yellow; Figure 6b). 

 

Comparing Feature Involvement and Visibility 

To compare models based on the functional involvement and visibility of body parts and 

action targets, we calculated a two-way preference map. As described above, each 

voxel was colored according to the model that predicted its responses the best (purple: 

feature involvement, blue: feature visibility; Figure 7b) and its saturation reflected the 

strength of the preference.  
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EXTENDED METHODS 
 
fMRI Data Acquisition. Imaging data were collected using a 32-channel phased-array 

head coil with a 3T Siemens Prisma fMRI Scanner at the Harvard Center for Brain 

Sciences. High-resolution T1-weighted anatomical scans were acquired using a 3D 

MPRAGE protocol (176 sagittal slices; FoV = 256 mm; 1x1x1 mm voxel resolution; gap 

thickness = 0 mm; TR = 2530 ms; TE = 1.69 ms; flip angle = 7 degrees). Blood 

oxygenation level-dependent (BOLD) contrast functional scans were obtained using a 

gradient echo-planar T2* sequence (84 oblique axial slices acquired at a 25° angle off of 

the anterior commissure-posterior commissure line; FoV = 204 mm; 1.5x1.5x1.5 mm 

voxel resolution; gap thickness = 0 mm, TR = 2000 ms; TE = 30 ms; flip angle = 80 

degrees; multi-band acceleration factor = 3). 

fMRI Analysis and Pre-Processing. Functional data were pre-processed using Brain 

Voyager QX software version 2.8.4 (Brain Innovation, Maastricht, Netherlands). 

Functional preprocessing included slice scan-time correction, 3D motion correction, 

linear trend removal, temporal high-pass filtering (0.008 Hz cutoff), spatial smoothing (4 

mm FWHM Kernel), and a transformation to Talairach coordinates. Whole-brain random-

effect group GLMs were fit separately for each video set, as well as for both odd and 

even runs of each video set. In all cases, the design matrix included regressors for each 

condition block, specified as a square-wave regressor for each 5-second stimulus 

presentation time, convolved with a 2-gamma function that approximated the idealized 

hemodynamic response. Across these GLMs, the average variance inflation factor 

across conditions of the design matrix was 1.03 (where a value greater than 5 is 

considered problematic), and the average efficiency was 0.2 (Liu, Frank, Wong, & 

Buxton, 2001). Voxel time series were normalized within a run using a z-transform and 

corrected for temporal autocorrelations during GLM fitting. Beta weights extracted from 

these group-level random-effects GLMs were averaged across subjects for each voxel, 

and then taken as the primary measure of interest for all subsequent analyses. Each 

subject’s cortical surface was reconstructed from the high-resolution T1-weighted 

anatomical scan using Freesurfer software, and one subject was selected as the display 

brain for the group data. 

 

fMRI Experiment Design Details. Participants completed 8 functional runs of the 

experiment. Each video set was presented in four separate 6.2-minute runs. During each 

run, participants saw all 60 videos from one of the two sets. Each 2.5-second video was 

presented twice in a row, fading in and out of a uniform gray background over a 500-

millisecond time window at the onset and offset of each presentation to prevent visually-

jarring transients between video presentations. Thus, each video was presented in a 5-

second block. In addition, four 15-second blocks of fixation were interspersed throughout 

the run, placed so that no fixation blocks occurred within five blocks of each other or the 

beginning or end of the run. In addition, fixation periods occurred for 4 seconds at the 

beginning and 10 seconds at the end of the run. Across runs, the order of the video 

blocks was randomized. Video stimuli were presented at 512 x 512 px on a 41.5 x 41.5 

cm screen, subtending approximately 9 x 9 degrees of visual angle in the participant’s 

visual field. To ensure that participants remained alert throughout the experiment, they 

pressed a button whenever a red frame appeared around a video during one of the two 
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video repetitions within a condition block. Such probes occurred 15 times per run and 

were counterbalanced so that each condition was probed once across all runs. All 

experimental protocols were presented using the Psychophysics Toolbox version 3 

(Kleiner, Brainard, Pelli 2007) and MATLAB version R2016a.  

 

Orthogonalizing the Feature Spaces. To facilitate our interpretation of each feature’s 

contribution to the encoding models, the body parts and action target feature spaces 

were submitted to Principle Components Analysis (PCA), which extracts orthogonal 

components from the original feature space. Doing so enables weights to be fit over the 

body-part synergies rather than the body parts themselves – otherwise, with some kinds 

of regularized regression, highly correlated features (such as the thumb and index 

finger) might be assigned different and more variable weights, leading to the mistaken 

interpretation that a given region was tuned to the thumb but not the index finger. 

However, it is important to note that this step is not strictly necessary when using 

encoding modeling with ridge regularization. Therefore, it is equally statistically valid to 

skip this orthogonalization step and perform ridge-regularized encoding modeling over 

the original feature space.  

PCA was performed separately on each feature space. The number of principle 

components (PCs) extracted was based on the number that cumulatively accounted for 

95% of the variance in the feature ratings. This resulted in 7 body part PCs and 5 action 

target PCs (Figure S1). The encoding modeling analysis was then performed over these 

12 PC features. Note that using these orthogonal predictors did not dramatically change 

the overall prediction performance compared to a model fit on the original 25 features 

(average change in cross-validated r = 0.02, sd = 0.11 for set 1; average change = 0.01, 

sd = 0.11 for set 2). We followed a similar approach to fit a model based on the body 

parts and targets that were visible in the videos. These ratings were averaged across 

raters for each video, then binarized by rounding the average rating to either 0 or 1. PCA 

was then performed separately on visibility ratings for body parts and action targets. 

Based on the number of PCs that cumulatively accounted for 95% of the variance in the 

feature ratings, 11 body part visibility PCs and 4 target visibility PCs were extracted. The 

encoding modeling analysis was then performed over these 15 PC features.  

 
Single-Subject Analyses. We also performed the encoding modeling and data-driven 
clustering analyses in each individual subject’s data. Because subjects vary in the extent 
of their reliable coverage, making comparisons across subjects challenging, encoding 
modeling analyses were done in the same voxels as in the group (cross-sets reliability > 
0.30 in the group data). Similarly, voxels were clustered into five networks using the 
voxels that were reliable and well-predicted (rCV > 0 with fdr-corrected q < 0.01) in the 
group data. To make it possible to compare the clustering results across subjects, in 
Figure S4 the clusters are displayed on individual subjects’ brains using a common 
colormap: clusters with a similar tuning profile across subjects are displayed in similar 
colors. This colormap was made by entering all subject’s tuning profiles for all networks 
into a multi-dimensional scaling (MDS) analysis. The first three dimensions of the MDS 
solution were then extracted and used as R, G, and B values for each cluster’s display 
color. Because some subjects did not have reliable neural responses in all of these 
regions, their results in Figure S2 and Figure S4 are ordered by the number of reliable 
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voxels found in each subject’s brain when reliable voxels were defined individually for 
each subject (cross-sets reliability > 0.30 in each subject’s data). 

 
 
Hierarchical Clustering. To validate our finding (based on k-means clustering) that the 

division between regions tuned to social and non-social features of actions emerges first, 

we also conducted a hierarchical clustering analysis. Voxels were grouped into a 

hierarchical tree based on the similarity of their feature weight profiles (the weights 

assigned by the voxel-wise encoding model to the 12 body-part and action-target 

features). This analysis was conducted separately over the data from our two video sets, 

using the group data. The analysis was restricted to the same set of voxels used in the 

k-means clustering analysis: voxels that were reliable across video sets and predicted 

well (rCV > 0 with q < 0.01 after FDR-correction) by the model when it was fit to the data 

from either video set. Next, we used MATLAB’s linkage function with the correlation 

distance metric to cluster voxels and then arrange them into a hierarchy based on the 

average distance between clusters. To determine the predominant division within this 

hierarchy, we examined the results at the point where the voxels branched into two 

clusters (Figure S6). To determine the robustness of this clustering, we computed d-

prime between the voxel groupings for video sets 1 and 2. To determine how similarly 

voxels were grouped by hierarchical clustering and k-means clustering, we computed d-

prime between the voxel groupings for the two methods, within each video set.  

Additional analyses revealed that subsequent divisions found by the hierarchical 

clustering analysis formed clusters that were very small (e.g., 30 voxels or fewer), and 

thus this supplemental analysis was not pursued further.  

 

Relating Motion Span and Interaction Envelope. The span of motion present in each 

action video was measured in two ways. First, human raters (N = 182) completed an 

online experiment on Amazon Mechanical Turk, in which they watched each video and 

then answered the question, “How much movement does this action or activity involve 

for the average person?” using a 1 to 5 scale. Second, optical flow was calculated for 

every frame in the videos using the Horn-Schunck algorithm, implemented in MATLAB 

(Horn & Schunck, 1981). The proportion of pixels that contained movement (average 

optical flow magnitude > 0.01) was then calculated for each video. To relate these 

measures of movement to neural tuning patterns, we first obtained the overall neural 

response to each video for each of the five networks, averaging across all voxels in each 

network. Next, we calculated each network’s motion sensitivity using a weighted average 

measure (i.e. for each network, the beta estimate for each video was multiplied by that 

video’s motion span; these products were then summed together and divided by the total 

number of videos). Motion sensitivity is therefore an average response across all the 

videos, weighted by the amount of movement in each video. Each network’s motion 

sensitivity was calculated separately for the two types of movement measurements 

(human ratings and optical flow; Figure S8). This analysis was done separately for the 

two video sets.   

 

Sociality and Transitivity Analysis. To compare our data to results reported in Wurm 

& Caramazza (2017), we searched for regions that were preferentially tuned to sociality 

(directed at a person) or transitivity (directed at an object). To do so, we fit a separate 
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encoding model based on the raw, un-PC’d action target feature matrix. Then, in each 

voxel we compared the magnitude of the weight assigned to object targets with the 

weight assigned to person targets. Voxels were colored orange if the object weight was 

larger and pink if the person weight was larger. Saturation reflects the size of the 

difference between the weights (Figure S9). 
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Figure S1. Principle Components Analysis of Body Part and Action Target Feature 

Spaces. Visualization of the (A) body parts and (B) action target features after being 

reduced via Principle Components Analysis. Percentages indicate percent variance in 

the feature ratings explained by each component. (C) Relationships between the 

Principle Components features, measured using Pearson’s correlation.  
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Figure S2. Voxel-wise Reliability in Individual Subjects. Split-half reliability maps are 

shown for each subject. Subjects are ordered according to the number of voxels that 

survived the reliability-based inclusion threshold (split-half r > 0.30, which was an 

appropriate threshold for all subjects, as well as in the group data).   
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Figure 

S3. Comparing 5-Network Solution Across Stimulus Sets. Results are shown for 

video set 1 (left) and set 2 (right). (A) K-means clustering was performed at every k from 

2 to 20 (x-axis), and the resulting cluster centroid similarities (measured as the average 

(blue) and maximum (orange) correlation between the centers of every cluster) are 

plotted. (B) The 5-network structure is displayed for each video set. The match between 

the voxel assignments was computed using d-prime. (C) The feature tuning profile is 

shown for each cluster. Tuning profiles were compared across video sets using 

Pearson’s correlation. 



 

37 
 

 

 

Figure S4. Model Performance and Large-Scale Structure in Individual Subjects. 

Prediction performance for the action-target-body-part model and large-scale clustering 

of the model weights into five clusters are shown for each subject. For clustering results 

displayed on the brain, voxels are colored according to a common colormap: all voxels in 

a cluster are shown in the same color, and clusters with similar tuning profiles are shown 

in similar colors. In addition, each cluster’s tuning profile is displayed to show which 

features the clusters are sensitive to. For each subject, we also list the median cross-

validated prediction performance (r) and d-prime comparing how voxels were grouped in 

the single-subject and group data. All results are based on the data from video set 1. 

Subjects are ordered according to the number of voxels that survived the reliability 

threshold in their data (see Figure S2). All single-subject analyses were conducted in 

the voxels used in the group analysis, though reliable coverage within these voxels 

differed across subjects. Figure continues for Subjects 5-13 on the next two pages. 
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Figure S5: The Emergence of Five Large-Scale Networks. Clustering solutions are 

shown at k = 2, 3, 4, and 5 clusters for (A) video set 1 and (B) video set 2. D-prime 

values indicate the correspondence between how voxels were clustered across the 

video sets. 
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Figure S6: Hierarchical Clustering of Voxel-wise Feature Tuning. Results of 
hierarchically clustering voxels into 2 clusters based on their feature tuning are shown 
for (A) video set 1 and (B) video set 2. The feature tuning profile (the average tuning 
across all voxels in the cluster) is shown for each cluster. D-prime value indicates the 
correspondence between how voxels were clustered across the video sets. The voxels 
were grouped similarly using this method compared to k-means clustering at k = 2 
(Figure S5; d-prime across clustering methods = 1.6 (set 1) & 0.6 (set 2)).    
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Figure S7. Comparing Feature-Based and Feature-Free Clustering Analyses. 

Feature-free and feature-based clustering solutions were compared at a range of 

possible numbers of clusters (k-values) using d-prime. This was done separately for 

each video set.  
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Figure S8. Relating Interaction Envelope and Motion Span. Sensitivity to the span of 

motion in the action videos is plotted for the five action sub-networks. Motion Sensitivity 

was calculated as each network’s average response over the action videos, weighted by 

the motion span apparent in each video. Blue bars depict motion sensitivity in video set 

1 based on human ratings of how much the average actor moves to complete each 

action. Orange bars depict motion sensitivity in video set 1 based on the proportion of 

pixels in the video’s frame containing movement during the course of the video, 

measured by optical flow. Black dots indicate the same values for video set 2.  
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Figure S9: Sociality and Transitivity (alternate feature spaces). Two-way preference 

map showing regions more related to person targets (“social” analog) or object targets 

(“transitive” analog). Voxels are colored according to the feature with the highest weight 

of the two possible targets: pink for person > object, orange for object > person. Color 

saturation reflects the strength of the voxel’s preference (person weight – object weight).  

 

 

 

 
 
 


