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When we observe another person’s actions, we process many kinds of information – from how
their body moves to the intention behind their movements. What kinds of information underlie
our intuitive understanding about how similar actions are to each other? To address this
question, we measured the intuitive similarities among a large set of everyday action videos
using multi-arrangement experiments, then used a modeling approach to predict this intuitive
similarity space along three hypothesized properties. We found that similarity in the actors’
inferred goals predicted the intuitive similarity judgments the best, followed by similarity in the
actors’ movements, with little contribution from the videos’ visual appearance. In
opportunistic fMRI analyses assessing brain-behavior correlations, we found suggestive
evidence for an action processing hierarchy, in which these three kinds of action similarities are
reflected in the structure of brain responses along a posterior-to-anterior gradient on the
lateral surface of the visual cortex. Altogether, this work joins existing literature suggesting
that humans are naturally tuned to process others’ intentions, and that the visuo-motor cortex
computes the perceptual precursors of the higher-level representations over which intuitive
action perception operates.

INTRODUCTION
Watching other people’s actions is a major component of natural vision. These actions make up a
rich and varied domain of visual input — in a typical day, we might see a child building a snowman,
someone re-stocking shelves at a grocery store, or a runner jogging through a park. We not only see
these actions, but also understand them — we can infer at a glance how experienced the runner is, and
that her goal is to exercise. Underlying this capacity is a series of social-visual computations, from
higher-level inferences about an actor’s mental state (Dodell-Feder et al., 2011; Koster-Hale et al., 2017;
Samson et al., 2004), to the intermediate-level perceptual representations of individual body parts,
objects, and physical properties like force and momentum (Downing et al., 2001; Rosch et al., 1976;
Singh, 2015; Fischer et al., 2016; Schwettmann et al., 2019; Tarhan and Konkle, 2020b). Further, all of
these computations are initially embedded in early sensory representations, which capture lower-level
properties like edge orientations and motion direction across the visual field (Giese and Poggio, 2003;
Hubel and Wiesel, 1962).

Yet, not all of these social-visual computations necessarily influence our intuitive perceptions of
actions — the things that humans naturally notice about actions and that inform our behavior (Vallacher
and Wegner, 1989). For example, humans can intuitively distinguish between a person who is jogging
for fitness and a person who is running to catch a bus. But, many of the properties that the visual system
processes during action perception —- such as edge orientation —- may not influence this level of
perception. Thus, our question is: what properties underlie this intuitive understanding of actions and
what makes them similar or different from each other?

The actors’ intentions are one property that may be tied to our intuitions about action similarity.
There is a rich developmental and social psychology literature demonstrating that actors’ intentions

1



are key to our understanding of actions, and that humans naturally process others’ mental lives and
goals when watching their actions. For example, infants expect others to reach for valuable objects in
the most efficient way possible and are sensitive to whether an action’s goal was completed (Gergely
and Csibra, 2003; Jara-Ettinger et al., 2016; Liu et al., 2017; Reid et al., 2007; Schachner and Carey,
2013). As adults, we also naturally describe actions in terms of their goals, suggesting that they are a
particularly salient property —- we say that someone “gave money to a homeless person,” rather than
that they “grasped a dollar and extended it to a homeless person” (Spunt et al., 2011). In addition, we
attribute motives and agency even to simple shapes that move in a way that indicates animacy (Heider
and Simmel, 1944; see also De Freitas and Alvarez, 2018; Isik et al., 2018). Finally, neuroimaging
work suggests that we naturally represent other people in terms of the mental states that they habitually
experience (Thornton et al., 2019a). Regions of the brain that process social information even seem
to automatically predict others’ future mental states (Thornton et al., 2019b) and the next event in a
narrative (Richardson and Saxe, 2020). All of this research suggests that similarities in actors’ goals
and intentions may influence intuitive perceptions of action similarity, because we naturally process
these elements of an action when we see it.

In addition to these inferences about the actor’s mental state, it is possible that directly perceptible
properties also influence intuitive action similarity. For example, perhaps running and walking seem
similar because they involve similar leg movements, or because they both tend to occur outdoors. Recent
work on the visual processing of actions has identified several such intermediate-level visual features
that might influence intuitive action perception. These include an action’s movement kinematics, such
as the body parts involved in an action and the movement’s speed and direction (e.g., Pitcher and
Ungerleider, 2020; Tarhan and Konkle, 2020b); the people, objects, and spaces that actions are directed
at (Tarhan and Konkle, 2020b); and the general configuration of an actor’s body relative to another
person (Abassi and Papeo, 2020; Isik et al., 2017; Papeo et al., 2017). These properties might influence
intuitive action perception because they are useful for inferring an action’s meaning; for example, body
position can signal whether two actors are interacting (Isik et al., 2017; Papeo et al., 2017) and other
kinds of motion features may influence moral judgments like blameworthiness (De Freitas and Alvarez,
2018).

Finally, it is possible that even the basic visual appearance of an action scene also influences our
intuitions about action similarity. Increasingly, research on object and scene perception finds that low-
and mid-level visual features can influence higher-order perceptual processing (Greene and Hansen,
2020; Groen et al., 2018; Long et al., 2018; Oliva and Torralba, 2006). For example, curvature features
can influence perceptions of real-world size (Long et al., 2018) and distributions of spatial orientations
differ between indoor and outdoor scenes (Oliva and Torralba, 2006). However, these early levels of
representation may only be useful in initial stages of action analyses without entering into our intuitive
understanding of actions.

In the present work, we probe how these different levels of representation contribute to intuitive
action understanding. To do so, we used both behavioral and neuroimaging analyses to explore the
nature of intuitive action representations. To measure the intuitive similarities between a set of short
action videos, we used a multi-arrangement task, in which participants arranged videos according to
their intuitive similarity (Kriegeskorte and Mur, 2012). This task has successfully been used to study
object and scene similarity (e.g., Jozwik et al., 2016; Groen et al., 2018). These action stimuli depicted
everyday sequences of movements – such as chopping vegetables – in naturalistic, 2.5-second videos
(from Tarhan and Konkle, 2020b). Importantly, these videos include the contextual information derived
from the scene and the action’s effects on the surrounding people, objects, and scene, and not just the
actor’s isolated movements (e.g., Haxby et al., 2020; Tucciarelli et al., 2019). These naturalistic and
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representatively-sampled stimuli contrast with targeted approaches that use abstract stimuli like verbs
(e.g., Bedny and Caramazza, 2011) or tightly controlled videos of a small set of actions (e.g., Wurm
et al., 2017). This approach makes it easier to draw general conclusions about natural action perception
(Haxby et al., 2020).

Next, we operationalized hypotheses drawn from the developmental, social, and vision literatures
by collecting human judgments of the action videos’ similarity along three broad dimensions: the
actors’ goals, the actors’ movements, and the videos’ visual appearance. We then assessed each of
these hypotheses, using predictive modeling techniques that have been used to study intuitive object
and scene perception (e.g., Jozwik et al., 2016; Groen et al., 2018). Finally, we mapped regions of
the visuo-motor cortex that respond according to these different representational formats, using a
searchlight analysis over an existing fMRI dataset (Tarhan and Konkle, 2020b).

To preview, we found that intuitive action similarity judgments are best predicted by the actors’
goals, followed by the actors’ movement kinematics. Further, our opportunistic analysis of existing
fMRI data did not reveal any localized regions with a response similarity structure that was highly
correlated with these intuitive similarities. However, we did find tentative evidence for a hierarchical
gradient of action processing in the visual system, starting with appearance-based similarity in the early
visual cortex, through movement-based similarity in the lateral occipito-temporal cortex, extending to
goal-based similarity in the temporo-parietal junction. These data thus highlight an action processing
hierarchy within a single, naturalistic action dataset. Overall, these findings suggest that humans are
naturally tuned to process others’ intentions, and to a lesser extent their kinematic properties, when
observing their actions.

RESULTS
Intuitive Action Similarity Judgments
To investigate the principles guiding the perception of a wide variety of actions, we used videos from
an existing dataset, depicting 60 everyday actions (Tarhan and Konkle, 2020b). These actions were
selected from the American Time Use Survey (U.S. Bureau of Labor Statistics, 2014), which records
the activities that Americans typically perform. We chose actions that spanned a range of familiar,
everyday activities – such as cooking, running, and laughing – and that engaged objects, people, and
their surroundings. Most actions involved a single agent, but a small subset involved two interacting
agents (e.g., shaking hands). We selected one short (2.5-second) video to depict each of these actions
(see Methods). These videos thus depict a wide range of actions, from hand-centric tool actions, like
knitting, to aerobic actions that engage the whole body, like dancing. In addition, they are richly varied
in their backgrounds, actors, and lower-level motion features such as speed and direction.

We measured intuitive similarities among these videos using a multi-arrangement task adapted
from Kriegeskorte and Mur (2012) (Figure 1a, see Methods). In this task, participants watched all 60
action videos. Then, they saw a blank white circle surrounded by representative still frames from each
video. They were told to drag these still frames into the circle, then arrange them according to their
similarity: stills from videos that seemed similar were placed closer together, while stills from videos
that seemed different were placed further apart (Kriegeskorte and Mur, 2012). We intentionally gave
participants very minimal instructions about how to judge similarity; instead, we asked them to do so
based on their natural intuitions.

We measured these intuitive similarity judgments in one main experiment (Experiment 1; N = 19)
and in one replication with new participants (Experiment 2; N = 20). The group-level similarity judg-
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Figure 1: Measuring Intuitive Action Perception. (A) To measure intuitive judgments of action similarity,
participants completed an action arrangement task, during which they watched the 60 action videos and then
arranged key frames from the videos according to their similarity: frames were close together if participants
thought the videos were similar, or far apart if they thought they were different. (B) Plot of the first two dimensions
of a Multi-Dimensional Scaling projection, to visualize broad trends in the structure in these intuitive judgments.
Actions are plotted close together in this projection if participants consistently judged them to be similar.

ments were very consistent across experiments (r = 0.89). We also assessed the inter-subject reliability
for each experiment by iteratively dividing the participants into two groups and then correlating the
averaged data across groups (see Methods). In both experiments, we found moderate inter-subject
reliability (average split-half Kendall’s τ-a correlation with Spearman-Brown Prophecy correction =
0.51 (Experiment 1), 0.57 (Experiment 2)).

To visualize the structure in these intuitive similarity judgments, we projected the group-level
similarities for Experiment 1 into two dimensions using multi-dimensional scaling (MDS). Figure
1b shows the resulting projection. The configuration of the actions in this projection provides some
insight into what kinds of actions participants regarded as similar. For example, sports actions (e.g.,
basketball), cooking actions (e.g., chopping), and getting-ready actions (e.g., tying a tie) were all placed
in distinct clusters in this projection.

Predicting Intuitive Similarity with Guided Behavior
To understand the structure of these intuitive action similarity judgments more quantitatively, we used a
predictive modeling framework to test what kind of properties could predict perceived action similarity
the best. To capture properties at different levels of abstraction, we collected guided similarity judgments
based on three different dimensions: the videos’ visual appearance, the actors’ movements, and the
actors’ goals. To gather these judgments, we asked new participants to arrange the 60 action videos
using the same similarity-based arrangement paradigm as before, but with more explicit instructions.
One group of participants (N = 20) was told, “please arrange these still images according to their
overall visual similarity,” regardless of the actions being performed. This group was encouraged to
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consider details like the colors in the scene and the direction of the actors’ movements. A second
group (N = 20) was told to arrange the videos based on similarity in the “actors’ body movements.”
This group was encouraged to consider details like whether the actors made large or small movements,
moved smoothly or suddenly, and what body parts they were using. Finally, a third group (N = 20) was
told to arrange the videos based on similarity in the “actors’ goals.” These tasks were meant to capture
relatively lower-level visual properties, more intermediate-level kinematic properties, and higher-level
inferences about the actions. The group-level representational dissimilarity matrices (RDMs) from
these three experiments operationalized our three hypotheses for the kinds of information that underlie
intuitive action similarity judgments. Supplemental Figure 1 displays the resulting RDMs and their
correlations. Hereafter, we refer to these matrices as “model RDMs.”

We then asked how well each model RDM predicted the intuitive similarity judgments. To do
this, we used linear regression: each model RDM was entered into a separate regression to predict the
intuitive similarity judgments. To estimate the best possible prediction performance, we calculated
the data’s noise ceiling as a range between the 25th and 75th percentiles of the data’s split-half
reliability (Spearman-Brown Prophecy-corrected Kendall’s τ-a = 0.50 – 0.55 (Experiment 1), 0.56-0.59
(Experiment 2)). We assessed prediction performance for each model RDM using a leave-1-action-out
cross-validation procedure: the regression was iteratively trained on all intuitive similarity judgments
except those involving one held-out action (e.g., the 1,711 similarities between action pairs not involving
running), then tested on the held-out data (the 59 similarities between running and all other actions).
Prediction accuracy was calculated by correlating the actual and predicted intuitive similarities for
this held-out data. If a model had high prediction accuracy, then the properties that it captures might
underlie intuitive action similarity judgments.

Figure 2a and Table 1 show the results of these analyses. In general, the model RDM based on the
actors’ goals predicted the data very well, while the model RDMs based on the actors’ movements and
the videos’ visual appearance both predicted the data moderately well (Figure 2a). This conclusion
was supported by a 2 x 3 (experiments x model RDMs) ANOVA, which revealed a significant main
effect of model RDM (F(2, 354) = 45.9, p < 0.001). Post-hoc comparisons indicate that the visual and
movement model RDMs did not differ, but both performed significantly worse than the goal model
RDM (Table 1). There was no main effect of experiment (F(1, 354) = 0.21, p = 0.65) and no interaction
(F(2, 354) = 0.41, p = 0.66). Altogether, these results show that the actors’ goals predicted intuitive
similarity judgments the best of the three hypothesized properties, but the actions’ movements and the
videos’ visual appearance also predicted these intuitive judgments relatively well.

Comparison Difference in Means p
Visual Appearance vs. Movements 0.09 0.06
Visual Appearance vs. Goals 0.38 <0.001
Movements vs. Goals 0.29 <0.001

Table 1: Results of post-hoc tests investigating the main effect of model RDM.

These results raise a natural question: how unique are these three model RDMs? Do the similarity
judgments based on visual appearance and movements account for different components of the intuitive
similarity judgments, or do they overlap? To address this question, we performed a commonality
analysis (Lescroart et al., 2015) to assess how much variance in the intuitive similarity judgments was
uniquely accounted for by each model RDM, and how much was shared between model RDMs. This
analysis was particularly crucial to understanding what kinds of information influence the intuitive
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Figure 2: Predicting Intuitive Action Similarities. (A) To investigate what kinds of properties underlie intuitive
action similarities, we tested how well similarity along three broad dimensions (model RDMs) predicted the
intuitive judgments. Prediction performance was measured for each model RDM in a leave-1-condition-out
cross-validation procedure. The results are shown for each experiment. Light grey bars indicate the noise ceiling
for each experiment. Colored horizontal lines indicate the median prediction accuracy for each model RDM,
calculated over all iterations of the leave-1-condition-out procedure. Grey dots show the prediction performance
on each iteration of this procedure (1 dot per held-out condition). (B) Commonality analyses (Lescroart et al.,
2015) were used to assess how much of the variance explained in the intuitive similarity judgments was shared
between the model RDMs, and how much was unique to one model RDM. Venn diagram illustrates the meaning
of each color: for example, variance that the goal similarity judgments uniquely explained is shown in green,
variance shared between the goal and movement similarity judgments is shown in light blue, and variance shared
by goal, movement, and visual similarity judgments is shown in dark grey. Light grey bars indicate the maximum
explainable variance (noise ceiling2) for each experiment.

similarity judgments, because the model RDMs captured some overlapping information (Supplemental
Figure 1).

Figure 2b and Table 2 show the results of this analysis. In general, the actors’ goals accounted
for the most unique variance (green bars in Figure 2b), indicating that this information is sufficient
to explain a large portion of the explainable variance in the intuitive similarity judgments. The
actor’s movements accounted for a much smaller amount of unique variance, while the videos’ visual
appearance did not account for any unique variance (see Table 2 for the complete set of results). In
combination, these three model RDMs accounted for roughly all of the explainable variance in the
intuitive similarity judgments (Experiment 1: 31% / 24%; Experiment 2: 34% / 31%). Note that these
models explained slightly more than the maximum explainable variance, which is possible because this
is only an estimate of the true maximum. Altogether, these results suggest that the actors’ goals not
only predicted the intuitive similarity judgments the best of the three model RDMs that we tested; they
also accounted for far more unique variance in the data.

Neural Correlates of Intuitive Action Similarity
In a previous study, we collected functional neuroimaging data while a separate set of participants
viewed these same videos (Tarhan and Konkle, 2020b). Here we take advantage of this existing dataset
to conduct opportunistic exploratory analyses to examine if there are any regions that show strong
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Experiment Partition of the Variance % Explained
Main Experiment Unique to Visual Appearance -0.02

Unique to Movements 2.6
Unique to Goals 16.0
Visual Appearance & Movements 1.0
Visual Appearance & Goals 1.7
Movements & Goals 4.0
Visual Appearance & Movements & Goals 5.5

Replication Unique to Visual Appearance 0.6
Unique to Movements 2.4
Unique to Goals 17.0
Visual Appearance & Movements 1.9
Visual Appearance & Goals 2.0
Movements & Goals 3.9
Visual Appearance & Movements & Goals 5.9

Table 2: Commonality Analyses. Results of commonality analyses to investigate how much variance in the
intuitive similarity judgements each model RDM uniquely accounts for, and how much is shared between model
RDMs. The maximum explainable variance (noise ceiling2) was 24% for the main experiment and 31% for the
replication.

correspondence with the intuitive measure of action similarity. Note that in this paradigm, participants
passively viewed the videos–no explicit similarity relationships among videos were task-relevant in
this experiment.

To assess where in the brain, if anywhere, there is a match between the intuitive action similarity
judgments and localized neural similarity structure, we conducted a whole-brain searchlight repre-
sentational similarity analysis (RSA; Kriegeskorte et al., 2006). This analysis compared the intuitive
judgments to representational dissimilarities within circumscribed searchlight spheres centered at each
voxel in the cortex.

As our first analysis step, we estimated and visualized how reliable the data in these brain search-
lights were. To do so, we calculated each searchlight’s split-half reliability, correlating the neural
RDMs from odd-numbered imaging runs with RDMs from even-numbered runs (see Methods; Tarhan
and Konkle, 2020a). The resulting reliability map (Figure 3a) shows that the searchlight data are
quite reliable in the dorsal and ventral streams of the visual cortex (max. split-half r = 0.88); however,
reliability is low in the prefrontal cortex, anterior temporal lobe, and medial parietal cortex (min.
split-half r = -0.13). This reliability map serves as a useful guide for interpreting the RSA results: the
low reliability outside of the visual cortex meant that we could not expect to find strong brain-behavior
correlations in those regions. However, the data had enough signal to observe strong correlations in
much of the visual cortex.

Next, we correlated these searchlight RDMs with the intuitive similarity judgments to determine
how well the representational structure in each searchlight captured the intuitive-level structure. As
shown in Figure 3b, we found significant brain-behavior correlations throughout the ventral and dorsal
visual streams, as well as primary somatosensory strip, primary motor strip, premotor cortex, and the
medial parietal lobe (the areas outlined in grey, which survived voxel-wise permutations (p < 0.01) and
cluster-level permutations (q < 0.05)). These correlations were strongest along the lateral temporal
cortex and superior temporal cortex, in the vicinity of regions that may represent objects’ functions and
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Figure 3: Exploratory Searchlight Analysis. Whole-brain searchlight analyses were used to compare intu-
itive similarity judgments to neural responses measured in a separate fMRI experiment (Tarhan and Konkle,
2020b). (A) Searchlight split-half reliability map, showing the correlations between neural dissimilarity matrices
calculated based on even- and odd-numbered imaging runs (see Methods). We have higher confidence in the
Representational Similarity Analysis results in voxels with higher searchlight reliability. (B) Searchlight results
comparing neural response geometries to intuitive judgments of action similarity. Grey lines outline the voxels
that survived statistical corrections (voxelwise permutation tests at p < 0.01, cluster-level permutation tests at q
< 0.05).

kinematics (Bracci et al., 2012; Bracci and Peelen, 2013; Leshinskaya and Caramazza, 2015). However,
these correlations were relatively weak (mean r among significant voxels = 0.11, s.d. = 0.04, range =
0.04-0.30), especially considering that the high reliability in these regions suggested that it should be
feasible to find stronger correlations if they exist (maximum split-half reliability r = 0.88). Therefore,
these results suggest that intuitive similarity judgments do not strongly draw on representations in the
visual cortex; however, they also leave open the possibility that these judgments draw more strongly on
representations in the prefrontal or anterior temporal cortex. We discuss this and other possibilities in
the Discussion.

We next examined how well our three hypothesized model RDMs could account for these response
similarities. Specifically, we examined whether the relatively low, intermediate, and higher-level action
properties would account for the neural response structure in increasingly high-level regions of the
visuo-motor cortex, which would reveal a hierarchical gradient of action-related processing starting in
the visual system.

To investigate this possibility, we first conducted whole-brain searchlight RSAs to compare each
model RDM to the brain (Figure 4, left panel), with significant relationships outlined in grey (voxel-
wise permutation tests: p < 0.01 with permutation-based cluster corrections q < 0.05). These model-
searchlight results reveal that much of the ventral and dorsal stream has local regional similarity
structure that corresponds with the three different similarity measures, to different degrees.

To visually compare the general topographic distribution of the strength of these searchlight
correlations over the entire brain, we calculated a 3-way winner map, in which each voxel is colored
according to the model RDM that was most strongly correlated with the searchlight RDM centered at
that voxel. Only voxels with positive model-brain correlations are plotted. Note that no statistical tests
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were conducted over the topographic distribution or strengths of this 3-way winner map visualization.
Thus these results should be interpreted cautiously, and are well-suited for deriving more specific
hypotheses about the cortical locations with different representational formats, that require further
testing for confirmation.

Figure 4: Visualizing the Action Processing Hierarchy. To understand which brain regions are most related to
each of the hypothesized kinds of action similarity, separate Representational Similarity Analyses were conducted
comparing each of the three model RDMs to neural responses. RSA results for each model RDM are shown
on the left, with significant voxels outlined in grey. A 3-way winner map (right) was calculated by identifying
the model RDM with the highest positive correlation to each searchlight and coloring the searchlight’s central
voxel according to that RDM. The intensity of the color indicates the difference between the strongest and
next-strongest correlation.

This winner map shows some suggestive evidence for a hierarchical progression in the structure
of brain responses. That is, the representational structure in the early visual cortex and parts of right
ventral temporal cortex is best captured by the model RDM based on visual appearance (red), while the
structure in the lateral temporal cortex and intra-parietal sulcus is best captured by the model RDM
based on movement kinematics (blue). Finally, regions known to be involved in social processing,
including the right temporo-parietal junction (TPJ), are captured best by the model RDM based on the
actors’ goals (green; Dodell-Feder et al., 2011; Koster-Hale et al., 2017; Pitcher and Ungerleider, 2020;
Saxe et al., 2004). Note that the TPJ lies just outside of our reliable coverage (Figure 3a), so while this
result aligns with strong prior evidence in the literature, we avoid drawing strong conclusions from this
analysis about the representations in this region.

The progression of best matching models highlights that actions are represented based on different
properties at different stages of visual processing. While this hierarchy echoes previous work on the
structure of the visual system, to our knowledge this is the first time it has been shown (i) specifically
for action processing, and (ii) in a single, naturalistic action dataset. It is also notable that some model
RDMs were more strongly correlated with the representational structure in the visual cortex than the
intuitive similarity judgments were (e.g., max. r = 0.45 for movement similarity judgments, compared
to 0.3 for intuitive judgments). This further suggests that there was enough signal in the data from these
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regions to pick up on a stronger correlation between the brain and the intuitive similarity judgments, if
one existed.

Altogether, these analyses suggest that the representations underlying intuitive action similarity are
not cleanly localized to a circumscribed region within action-responsive visuo-motor cortex. Rather,
we found suggestive evidence for an action processing hierarchy that unfolds across the visual cortex
and likely extends into social-processing regions in the temporo-parietal junction.

DISCUSSION
Here we investigated how well properties at different levels of abstraction capture behavioral judgments
about the intuitive similarities among a large set of everyday action videos. We found that the actors’
goals strongly predicted these intuitive similarities, while the actors’ movements also contributed to
these judgments, but visual appearance contributed little to nothing. These findings add to existing
evidence that humans naturally process others’ motivations when they observe and compare their
actions. To add to this cognitive investigation, we found evidence for a representational gradient in
the brain, whereby early visual cortex represents actions’ visual appearance and higher-level visual
cortex represents more intermediate-level kinematic information. This gradient highlights transitions
in the structure of action representations along the visual processing stream; notably, we found this
representational gradient in a single, naturalistic dataset. In the following sections, we situate these
findings in the literature, highlight how this work advances existing methods for understanding action
processing, and discuss promising next steps.

Intuitive Action Representations in the Mind
Our primary finding was that judgments about the similarity of actors’ goals was the best predictor of
intuitive action similarity judgments. In addition, these goals accounted for the most unique variance in
the intuitive similarity data. We interpret this to mean that humans naturally and intuitively process
other actors’ internal motivations and thoughts, even in the absence of an explicitly social task. This
conclusion adds to a rich literature showing that humans automatically represent others in terms of
their mental states, even from a very young age (Gergely and Csibra, 2003; Jara-Ettinger et al., 2016;
Liu et al., 2017; Reid et al., 2007; Thornton et al., 2019a,b). In addition, we found that similarity in
the actors’ movements also predicted intuitive judgments moderately well and accounted for a smaller
amount of unique variance in the data. This finding goes beyond our current understanding of the
factors driving natural action processing, to suggest that kinematic information also contributes to
intuitive action perception. In contrast, similarity in the videos’ visual appearance did not account for
any unique variance in the data, suggesting that lower-level visual properties such as color, form, and
motion direction do not have much influence on natural action perception.

It is important to note that the multi-arrangement task used here can tell us which actions are more
similar than others based on a instructed property, but not why they are similar. Thus, a natural extension
of these findings is to investigate the format of these goal- and movement-based representations–that
is, what specific features do humans consider when estimating the similarity in actors’ goals and
movements? For example, how important are speed, trajectory, and movement quality (e.g., shaky or
smooth) for our assessment of the similarity among actions’ movements? Do we consider physical
variables – such as facial expression – when inferring actors’ goals? Recent empirical advancements
provide concrete methods for addressing these questions. For example, modeling approaches that learn
sparse feature-based representations allow researchers to infer the format and dimensionality of the
representations underlying similarity judgments (Hebart et al., 2020). Additionally, advances in deep
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learning models provide tools to explore whether image- and video-computable feature spaces match
behaviorally-measured similarity spaces.

Related to this point, we used behavioral judgments, rather than image-computable features, to
estimate a similarity based on visual appearance. But, one concern is whether behavioral similarity
judgments can even capture low-level visual properties—do individuals have explicit access to this
level of representation? Further, if individuals spontaneously represent actions in terms of their
goals, how can we be sure that the similarity judgements based on visual and movement properties
were not affected by the spontaneous processing of the actors’ goals? These are important questions
because the logic of our design assumes that people can flexibly and accurately report different kinds
of similarity relationships, given explicit instructions. Empirically, the fact that the three kinds of
similarity judgments showed distinct and reliable variance (Supplementary Figure 1) supports the
validity of this assumption. Additionally, the fact that these behaviorally-measured similarity spaces
showed some correspondence with brain similarity structure (e.g. with visual appearance similarity
showed the strongest correspondence with the early visual cortical regions) further supports this logic.
In general, a strength of our empirical approach is that using the same behavioral task with different
targeted instructions allows these model similarity spaces to be more comparable in their format, and
the similarity spaces are clearly also behaviorally-relevant.

Intuitive Action Representations in the Brain
In addition, we explored the neural basis of intuitive action perception. In an opportunistic repre-
sentational similarity analysis, we found that the representational geometries in regions in the lateral
occipito-temporal, intra-parietal, and sensorimotor cortices were only weakly correlated with intuitive
similarity judgments—we did not find strong evidence that these regions support intuitive action
representations in a localized manner. Why? One possibility is that intuitive similarity judgments rely
on representations that are distributed among a widespread network of brain regions, which would
only be detected by a larger-scale analysis – such as decoding from a much larger swathe of cortex.
Another possibility is that these results were influenced by the task done in the fMRI scanner. In
our data, observers passively viewed the videos. Perhaps a different task – such as making intuitive
similarity judgments between successive videos, for example – would reliably engage additional regions
with a more goal-based similarity structure, or even modulate the similarity structure measured in the
visuo-motor cortex.

Keeping these caveats in mind, in the current neuroimaging dataset there seems to be a division
between intuitive action judgements, which relies on fairly abstract information about the actor’s mental
states and goals, and the visuo-motor cortex, which represents a range of action properties that may be
the perceptual precursors to higher-level processing. Consistently, earlier work by Lestou et al. (2008)
also found that areas in the visual and parietal cortex were relatively more sensitive to the kinematics
of actions, than to their goals. And more recently, Pitcher and Ungerleider (2020) have proposed that
the visual cortex contains a major processing stream dedicated to processing others’ movements. This
stream sits between the classic “what” and “where” pathways (Mishkin et al., 1983), and is thought to
process the visual information that eventually feeds into more abstract action representations outside of
the visual cortex.

This hypothesis suggests that relatively perceptual properties may explain the structure in the visuo-
motor cortex well, but fall short of predicting intuitive judgments well. In line with this idea, we found
that the visual cortex was more strongly correlated with actions’ visual appearance and movements than
it was with the intuitive similarities (Figure 3b & Figure 4). In addition, our previous work (Tarhan
and Konkle, 2020b) indicated that the body parts and targets involved in an action, whether an action is

11



directed at a person (sociality), and the scale of space at which it affects the surroundings (interaction
envelope) all predict responses in this cortex well. In contrast to their prominence in the visuo-motor
cortex, these properties only predicted intuitive similarity judgments moderately well (Supplemental
Figure 2). The perceptual precursors computed en route to intuitive action representations may also
include some functional information (such as how bodies and object interact, or whether the action
creates something new), which explains action responses in the parietal and lateral occipito-temporal
cortices (Thornton and Tamir, 2019; Bracci et al., 2012; Bracci and Peelen, 2013; Leshinskaya and
Caramazza, 2015; Tucciarelli et al., 2019). While this functional information may seem more abstract
than an action’s visual appearance, it may still be less abstract than the mental state information
that scaffolds intuitive similarity judgments. Altogether, this evidence supports the notion that the
visuo-motor cortex computes the perceptual precursors of the higher-level representations over which
intuitive action perception operates.

Where, then, does the brain house these intuitive action representations? Given that the actors’
goals predicted intuitive judgments very well, it is likely that the answer lies in regions involved in
representing others’ mental states or personal attributes. These include the medial prefrontal cortex
(mPFC), the anterior temporal lobe (ATL), and the temporo-parietal junction (TPJ; Dodell-Feder
et al., 2011; Koster-Hale et al., 2017; Samson et al., 2004; Saxe et al., 2006; Thornton and Tamir,
2019). Others have implicated regions in the ventral premotor cortex (e.g. Lestou et al., 2008, see also
Sitnikova et al., 2014; Lingnau and Petris, 2013). We did not find strong correlations between any of
these regions and the intuitive similarity judgments. However, this does rule out the possibility that
these regions are involved in intuitive action perception. Recall that our reliability analysis revealed
that our data are very reliable in the visuo-motor cortex, but much less reliable in the mPFC, ATL,
and TPJ. This pattern of reliability makes it virtually impossible to find strong correlations in these
social-processing regions, even if they truly are involved in intuitive action perception.

Interpreting our results in light of reliability sets this work apart, because it allows us to qualify
which results are informative, and which are not. In any fMRI study, some regions will be more reliable
than others (Tarhan and Konkle, 2020a; Eklund et al., 2016). In our case, if we had not accounted for
these variations in reliability, we might have concluded that parts of the visual cortex are moderately
related to intuitive action perception, while mPFC and ATL are not related at all. In contrast, when we
account for these variations, we conclude that these parts of visual cortex are most likely not related to
intuitive action perception, while mPFC and ATL may be related to these intuitions. This is because
reliability in the visual cortex regions was so high that we could have found much stronger correlations
if they existed. In contrast, reliability in mPFC and ATL was too low to pick up on correlations even
if they existed. This difference in our interpretations before and after taking reliability into account
highlights the importance and power of reliability analyses for interpreting cognitive neuroscience
results.

METHODS
Data Availability
All data, stimuli, and main analysis scripts are available on the Open Science Framework repository for
this paper (https://osf.io/d5j3h/).

Experimental Procedures
Participants
113 participants were recruited through the Harvard Psychology Department for in-lab action arrange-
ment studies. These participants were either paid $15 or given course credit. Data were excluded from
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15 participants because of incomplete or unreliable data (participant-level noise ceilings < 0.1). All
participants gave informed consent in accordance with the Harvard University Institutional Review
Board and the Declaration of Helsinki.

Stimuli
The stimuli consisted of 60 videos depicting everyday actions (Tarhan and Konkle, 2020b). The 60
actions were selected from the American Time Use Survey (U.S. Bureau of Labor Statistics, 2014),
which surveyed a large sample of Americans about the activities that make up their days. The videos
were edited to 2.5 seconds in duration, with a square (512 x 512 pixel) frame centered on the main
actor.

Multi-Arrangement Task
In two experiments, participants (Experiment 1: N = 19, 7 males, mean age: 21.5 years; Experiment 2:
N = 20, 6 males, mean age: 21.7 years) completed a multi-arrangement task adapted from Kriegeskorte
and Mur (2012) (Figure 1a). First, they watched all 60 videos without sound. The videos were played
in a randomized order without breaks in full-screen mode (monitor dimensions: 18.75 x 10.5 inches).
Once the videos had finished playing, the multi-arrangement task began. On each trial of this task,
participants saw a blank white circle surrounded by key frame images from the videos. They were told
to drag the images into the circle, then arrange them so that images from similar videos were closer
together and images from different videos were further apart. They were also told that there was no
“right” way to arrange the videos; rather, they should use their intuitions to decide how similar the
videos were. Once they had arranged all of the key frame images in the circle, they could continue
on to the next trial; there was no time limit for each trial. In addition, they could re-play any video as
much as they wanted in a separate window, to remind themselves of what it looked like.

In order to collect reliable data in an efficient way, we used a “lift-the-weakest” algorithm
(Kriegeskorte and Mur, 2012) to determine which key frames to show on each trial. On the first
trial, participants arranged key frames from all 60 videos. Then, they completed approximately 20-70
subsequent trials where they arranged key frames from a sub-set of the 60 videos. The algorithm
selected key frames just before each trial, based on an accumulated evidence criterion (signal-to-noise
ratio2). Evidence scores were calculated for each pair of videos after each trial. Pairs received a low
evidence score if the actions had not been arranged relative to each other many times, or if they had
been arranged inconsistently during prior trials. Key frames from these actions were more likely to be
presented in subsequent trials, in order to measure their perceived similarities more accurately. Often,
low evidence action pairs had been placed very close to each other within a cluster – focusing on these
clusters during subsequent trials allowed us to capture the finer-grained distances among actions within
a cluster. The trials continued until all action pairs achieved a minimum evidence criterion of 0.5 or the
experiment timed out (after 60 minutes, excluding time for breaks).

At the end of the experiment, the data consisted of the lower triangle of a distance matrix between
all action videos. Each cell (i, j ) contained the estimated Euclidean distance between videos i and j,
built up over trials. This estimate was calculated using an inverse multi-dimensional scaling algorithm
to infer distances between videos that were presented on-screen in different sub-sets. In addition, these
distances were normalized to account for the fact that different trials presented different numbers of key
frames within the same amount of screen space. More details on the lift-the-weakest algorithm, inverse
multi-dimensional scaling, and normalizing procedures can be found in Kriegeskorte and Mur (2012).
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Guided Similarity Judgments
To measure the actions’ similarity according to specific kinds of properties, we also ran a variant of the
multi-arrangement task with more explicit instructions, with new participants. One group (N = 20)
was instructed to arrange key frame images from the 60 action videos according to similarity in their
overall visual appearance. Specifically, they were told, “Please arrange these still images according to
their overall visual similarity, regardless of the actions in the videos”, and during the practice trials
the experimenter encouraged participants to take information like the colors and the direction of the
movements into account when arranging the actions. Another group (N = 20) was instructed to arrange
the key frames according to similarity in the actors’ manner of movement. This group was told, “Please
arrange these still images according to the actors’ body movements”, and during the practice trials the
experimenter encouraged them to pay attention to the body parts being used, the amount of movement
in the video, whether it was smooth or abrupt, et cetera. A third group (N = 20) was instructed to
arrange the key frames according to similarity in the actors’ goals. They were told, “Please arrange
these still images according to similarity in the actors’ goals.” Distance matrices were averaged across
participants for each of these conditions, producing three model RDMs that were used to predict the
intuitive similarity judgments measured in the multi-arrangement task.

fMRI Data
We used data from Tarhan and Konkle (2020b) to analyze neural responses to the same action videos
as were used in the multi-arrangement task. In that experiment, 13 participants completed a 2-hour
fMRI scanning session, during which they passively viewed the videos and detected an occasional
red frame around the videos to maintain alertness. Further details about these data can be found
in Tarhan and Konkle (2020b) and at the paper’s Open Science Framework repository (https:
//osf.io/uvbg7/)

Multi-Dimensional Scaling Analysis
Multi-Dimensional Scaling (MDS) was performed over the intuitive similarity judgments from Ex-
periment 1, to visualize the overall structure in these judgments. The distance matrices measured in
the multi-arrangement task were averaged across individual participants and non-metric MDS was
performed over this group-averaged distance matrix in MATLAB. We extracted the first two dimensions
of the resulting projection and plotted them as a scatterplot (Figure 1b). Note that we extracted two
dimensions for ease of visualization, but stress plots indicated that four dimensions would more fully
capture the structure of the data.

Modeling Analyses
Noise Ceilings
We used a split-half procedure to calculate the noise ceiling for the intuitive similarity judgements,
to provide a reference for how well we could expect any model to predict the intuitive similarity
judgments given the data’s inherent noise. We randomly divided individual participants into two
groups, then averaged the distance judgments over all participants in each group and calculated the
Kendall’s τ-a correlation between the groups. This procedure was repeated 100 times, to build up a
distribution of split-half correlation values. We then corrected for the effects of splitting the data by
applying a Spearman-Brown Prophecy Correction. We estimated the noise ceiling as a range from this
distribution’s 25th percentile to its 75th percentile.

Predictive Modeling
We used cross-validated regression to assess how well the three model RDMs – the judgments about
the videos’ visual appearance, movements, and the actors’ goals – could predict the intuitive similarity
judgments. First, we averaged the intuitive similarity judgments across all participants, and both these
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and the model RDMs were z-normalized so that they had a mean value of 0 and a standard deviation of
1. Then, we iteratively fit an Ordinary Least Squares regression to the intuitive similarity judgments
for each model RDM. On each iteration, we held out the data from one action (distances between 59
pairs of actions) and fit the model using the data from 59/60 videos (1,711 pairs). We then calculated
the predicted intuitive similarity judgments for the held-out data using the weights fit on the training
data. Because each pair of actions was held out twice during this cross-validation procedure (once
when holding out all pairs involving action i and again when holding out all pairs involving action j),
we averaged over the two predicted intuitive similarities to obtain a single predicted intuitive similarity
judgment for each pair. Finally, to assess how well each model RDM predicted the held-out data across
these iterations, we correlated the predicted similarity judgments with the actual similarity judgments
using Kendall’s τ-a correlation. This correlation was calculated separately for each iteration —- over
the pairs that were held out during that iteration —- and then averaged over the iterations. This entire
procedure was performed separately for each model RDM and each of the two experiments.

Comparing Predictive Models
To compare the model RDMs’ prediction performance across experiments, we conducted a 3x2 (model
RDMs x experiments) ANOVA. We accounted for the fact that noise ceilings differed across experiments
by re-scaling the prediction results as a proportion of the noise ceiling’s lower bound. Post-hoc tests
were run to investigate any significant main effects, using the Tukey-Kramer correction for multiple
comparisons.

Commonality Analyses
Commonality Analyses were used to assess how much each model RDM’s prediction performance
reflected its ability to account for unique variance in the intuitive similarity judgments, and how much
was shared with other model RDMs. To do this, we followed the procedure described in Lescroart et al.
(2015).

First, we ran seven regressions, using all possible combinations of the three model RDMs to predict
the intuitive similarity judgments. That is, we ran one regression predicting the intuitive judgments with
all three model RDMs: one with the goal- and movement-based RDMs; one with just the goal-based
RDM, and so on. For each regression, we estimated the squared leave-1-condition-out prediction
value (Kendall’s τ-a2), which is an approximation of the amount of variance explained in the intuitive
judgments by the predictors entered into that regression.

To calculate the amount of variance in the intuitive similarities that was uniquely explained by a
model RDM (e.g., goal-based similarity), we subtracted the τ-a2 value for the combination of the other
two model RDMs from the τ-a2 value for the combination of all three RDMs. For example, the unique
variance (UV ) explained by goal-based similarity was calculated as:

UVG = τ2G, M, and A − τ2M and A

Where

G = similarity based on goals

M = similarity based on movements

A = similarity based on appearance
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We calculated the amount of variance shared by all three model RDMs (SV ) as:

SVG, M, and A = τ2G + τ2M + τ2A − 2× τ2G, M, and A + UVG + UVM + UVM

Finally, the amount of variance shared between the goal and movement model RDMs (but not the
appearance RDM) was:

SVG andM = τ2G + τ2M − τ2GandM − SVG, M, and A

To calculate the total explainable variance in the data, we simply squared the noise ceiling range
for each experiment.

Whole-Brain Searchlight Analyses
Whole-brain searchlight representational similarity analyses were conducted to map out where, if any-
where, the brain’s representational geometry matches the structure in the intuitive similarity judgments.
For each gray-matter voxel, we calculated a neural Representational Dissimilarity Matrix (RDM) based
on the responses from gray-matter voxels within 9 mm (3 voxels) of that voxel. On average, each
searchlight contained 121.3 voxels (s.d. = 4.5). Neural RDMs were calculated over the voxels in the
searchlight using the correlation distance between the response patterns for each pair of actions.

Searchlight Reliability
Before comparing these neural RDMs to the behavior, we assessed the reliability of the RDM in each
search sphere. To do this, we calculated separate neural RDMs using data from odd- and even-numbered
imaging runs. Then, we correlated these splits of the data, resulting in a map of search sphere reliability
across the cortex (Figure 3a). This procedure is a variation on the one described in Tarhan and Konkle
(2020a).

Searchlight Representational Similarity
To compare these neural response geometries to the structure in the intuitive similarity judgments, we
calculated the Pearson’s correlation between the group-level intuitive similarity judgments and the
neural RDM in each search sphere (Figure 3b). Correlations were considered significant for voxels
that survived voxel-wise permutation tests (p < 0.01) and permutation-based cluster corrections (q <
0.05). We also repeated this process for each of the three model RDMs.

Three-Way Winner Map
To compare the whole-brain searchlight results across model RDMs, we calculated a 3-way winner
map (Figure 4). In this map, we colored voxels according to the model RDM with the highest positive
correlation with the neural RDM centered on that voxel. When there was a tie for the highest correlation,
voxels were colored grey to indicate a lack of preference. In addition, the voxels’ saturation reflects the
difference between the highest and next-highest correlations: voxels where one model RDM clearly
dominated the others are colored more deeply. This analysis reflects an exploratory visualization using
group-level data. As such, no statistics were done over this map.
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Supplementary Information

1 Extended Methods
1.1 Sociality and Interaction Envelope
In previous work Tarhan and Konkle (2020b), we found evidence that the visual cortex’s responses
to action videos are organized by two features: sociality (whether an action is directed at a person)
and the size of the interaction envelope (the spatial extent of an action’s effect on the world). The
fMRI experiment in that work used the same set of action videos as in the current study. Because these
features predicted action processing well in a large swathe of the brain, we wondered whether they
captured information that informs the downstream processing supporting intuitive action understanding.
To investigate this, we asked how well sociality and interaction envelope size could predict the intuitive
similarity judgments.

To calculate the sociality and interaction envelope features for each video, we returned to the
analysis that revealed this pattern in our previous work. In that work, a clustering analysis revealed
5 networks of brain regions. We interpreted the tuning of each network by examining the networks’
tuning to the different body parts involved in the action videos and the actions’ targets (what they
were directed at, such as an object or a person). One network was tuned to actions directed at people,
such as talking (sociality; Supplemental Figure 2a), while the remaining four were tuned to different
interaction envelope sizes (Supplemental Figure 2b). For example, one network was tuned to small
interaction envelopes, as in actions that involve fine, object-directed hand movements like knitting. At
the other extreme, another network was tuned to larger interaction envelopes, as in actions that involved
large movements of the whole body, directed at distant locations like a soccer penalty shot.

For each action video, we had measured which body parts were engaged by the action and what
the action was directed at, using human ratings (see Tarhan and Konkle, 2020b for details). And for
each network, we had calculated a tuning profile to these body parts and targets. So, to measure where
each video fell along these five sociality and interaction envelope dimensions, we multiplied these body
part and target ratings by each network’s tuning profile. This produced an estimate of how well each
video aligned with each network’s preferred tuning. For example, a video of two people shaking hands
was rated as being directed at other people and involved only the hands and arms. This video would
then have a high value on the “sociality” and “small interaction envelope” dimensions, but lower values
for the “medium interaction envelope,” “medium-large interaction envelope,” and “large interaction
envelope” dimensions.

Finally, we assessed how well these features predict the intuitive similarity judgments in both
experiments. In all three experiments, the sociality-interaction envelope features predicted the intuitive
similarity judgments moderately well (Supplemental Figure 2c; mean cross-validated τ-a = 0.21, sd =
0.16 (Experiment 1); 0.26, s.d. = 0.16 (Experiment 2). However, these features performed worse than
the three model RDMs based on the actors’ goals, movements, and the videos’ visual appearance. This
suggests that, while sociality and interaction envelope predict action responses well in the visual cortex,
they do not add much when predicting intuitive judgments.
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Supplemental Figures

Supplemental Figure 1: Comparing Model RDMs. Group-level Representational Dissimilarity Matrices
(RDMs) are shown for the three types of action similarity judgments. Split-half reliabilities (after Spearman-
Brown prophecy corrections) are listed for each type of judgment. Numbers beneath the grey arrows indicate the
Spearmans’s correlations between these model RDMs.
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Supplemental Figure 2: Sociality and Interaction Envelope. In prior work (Tarhan and Konkle, 2020b), we
found that sociality and interaction envelope size predict action responses throughout the visual cortex. To assess
whether these properties also influence downstream intuitive action processing, we asked how well similarity
in actions’ sociality and the size of their interaction envelopes could predict intuitive similarity judgments. (A)
Illustration of the sociality feature dimension, showing how much voxels in a right-lateralized network of brain
regions were tuned to the body parts and targets involved in an action (Tarhan and Konkle, 2020b). Each body
part and target is colored according to the strength of the network’s tuning – for example, this network was
strongly tuned to actions directed at the actor or another person, but was not strongly tuned to actions directed at
far space. (B) Illustrations of the four interaction envelope feature dimensions, which range from small envelopes
around fine movements directed at objects (e.g., knitting) to large envelopes around coarser movements directed
at distant locations (e.g., a soccer penalty shot). (C) We used these five dimensions – sociality and four sizes
of interaction envelope – to predict intuitive similarity judgments about the actions. Prediction performance is
plotted for the intuitive judgments measured in each experiment. Grey bars indicate the noise ceiling for each
experiment. Horizontal black lines indicate the median prediction performance for each experiment, and grey
dots plot performance on each iteration of the leave-1-condition-out procedure.
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